Заключение. В численных методах теории дифференциальных игр динамика простых движений совершенно естественно возникает при локальной аппроксимации линейной или нелинейной динамики, когда "замораживаются" возможности игроков по времени и по пространственным переменным. Различные варианты численного построения максимальных стабильных мостов с двумерной фазовой переменной, основанные на аппроксимации исходной управляемой системы системами с простыми движениями и выделении на границе строящегося множества дуг выпуклости (с внешними нормалями) и вогнутости (с внутренними нормалями), разрабатывались в отделе динамических систем Института математики и механики УрО РАН в работах В.Л. Туровой, Г.Г. Гарнышевой, С.С. Кумкова, А.Н. Жаринова.

Представляемый в данной работе результат может быть использован для уточнения промежутков времени, на которых без пересчета при "замороженной" динамике ведутся построения сечений максимального стабильного моста.

Работа выполнена в рамках программы Президиума РАН "Фундаментальные проблемы нелинейной динамики в математических и физических науках" при финансовой поддержке УрО РАН (проект № 12-П-1-1012), а также при поддержке РФФИ, грант 12-01-00537.

Список литературы

- 1. Айзекс Р. Дифференциальные игры. М.: Мир, 1967.
- 2. *Красовский Н. Н., Субботин А. И.* Позиционные дифференциальные игры. М.: Наука, 1974.
- 3. *Пшеничный Б. Н.*, *Сагайдак М. И.* О дифференциальных играх с фиксированным временем // Кибернетика. 1970. № 2. С. 54–63.
- 4. *Понтрягин Л. С.* Линейные дифференциальные игры, II // Докл. АН СССР. 1967. Т. 175. № 4. С. 764–766.

УПРАВЛЕНИЕ ПРОЦЕССОМ ИЗМЕРЕНИЯ В ДИНАМИЧЕСКИХ СИСТЕМАХ

В.В. Карелин

Санкт-Петербургский государственный университет Университетская наб. 7–9, 199034 Санкт-Петербург, Россия vlkarelin@mail.ru

Пусть наблюдается случайный процесс x(t), если время t принимает дискретные значения, то этот процесс $x(t) = x_t$ может быть описан

следующим рекуррентным соотношением

$$x_{t+1} = \theta' x_t + f_{t+1},\tag{1}$$

$$y_t = q(t)x_t + \eta_{t+1},\tag{2}$$

где f_t и η_t — случайные величины соответственно характеризующие возмущения действующие на объект и ошибки измерений, а $\theta \in \Theta$ — вектор неизвестных параметров. В случае непрерывного времени, процесс x(t) описывается стохастическим дифференциальным уравнением Ито

$$\dot{x}(t) = \theta' x(t) + \dot{f}(t) \quad x(t_0) = x(0), \tag{3}$$

$$y(t) = Q(t)x_t + \dot{\eta}(t). \tag{4}$$

Здесь $\dot{f}(t)$ и $\dot{\eta}(t)$ – гауссовские белые шумы с нулевым математическим ожиданием и корреляционными матрицами $G(t)\delta(t-s)$ и $\sigma(t)\delta(t-s)$

Переходная функция процесса, определяемая уравнением (1), имеет вид $P(x_{t+1}|x_t,\theta)=P_{\theta}(x_{t+1}|x_t)=F(x_{t+1}-\theta'x_t)$, где F(z) – плотность распределения случайной величины f_t . В математической статистике существует много методов оценки параметров, например, такие как минимаксный подход, когда статистические решения оцениваются по "худшему" из возможных значений θ , байесовский подход, при котором для неизвестного параметра θ вводится $V(d\theta)$) - некоторое распределение на (Θ, \mathcal{F}) которое называется априорным распределением и другие методы. В статье рассматривается байесовский подход.

Процесс x_t определяемый переходной функцией $P_{\theta}(x_{t+1}|x_t)$ можно трактовать как частично наблюдаемый марковский процесс в фазовом пространстве $X \times \Theta$ с переходной функцией для $\theta: \theta_{t+1} = \theta_t$. Используя конструкцию, предложенную А. А. Юшкевичем [1] для сведения задачи с неполной информацией к задаче с полной информацией, приходим к рассмотрению процесса в фазовом пространстве $\{X \times \mathcal{N}\}$, где \mathcal{N} – пространство распределений на Θ . Определим переходную функцию в пространстве $\{X \times \mathcal{N}\}$ следующим образом [2]

$$P(x_{t+1}|x_t,\nu_t) = \int_{\Theta} P_{\theta}(x_{t+1}|x_t)\nu_t(\theta)n(d\theta),$$

где плотность распределения $u_{t+1}(\theta)$ определяется формулой

$$\nu_{t+1}(\theta) = \nu_t(\theta) \frac{P_{\theta}(x_{t+1}|x_t)}{P(x_{t+1}|x_t, \nu_t)}$$

с начальными распределениями $P_1(x_1), \nu_1(\theta) = d\nu_1/dn$.

Пусть $\nu_t(\theta)$ – плотность нормального случайного вектора с средним значением $\bar{\theta}_t$ и корреляционной матрицей S_t . $\nu_t(\theta) = \Gamma_t \exp\{-\frac{1}{2}(\bar{\theta}_t - \theta_t)'S_t^{-1}(\bar{\theta}_t - \theta_t)\}$ Тогда $\nu_{t+1}(\theta)$ – плотность нормального вектора с корреляционной матрицей S_{t+1} и средним значением $\bar{\theta}_{t+1}$, причем справедливы рекуррентные соотношения, аналогичные соотношениям дискретного фильтра Калмана

$$S_{t+1}^{-1} = S_t^{-1} + \frac{1}{\sigma_{f^2}} x_t x_t'. {5}$$

Из (5) вытекает, что в случае гауссовских величин f_t апостериорные плотности $\nu_t(\theta)$ распределения обладают интересным свойством – их корреляционные матрицы монотонно убывают : $S_{t+1} \leq S_t$.

Используем байесовский подход для процесса описываемого уравнениями (3) и (4). Тогда получим систему дифференциальных уравнений для вычисления матрицы ковариации D процесса x(t).

$$\dot{D} = \bar{\theta}D + D\bar{\theta}' - DQ'f^{-1}QD + G, \ D(0) = D_0.$$

Обозначим $DQ'f^{-1}QD = V(t)$ и перепишем это уравнение в виде

$$\dot{D} = \bar{\theta}D + D\bar{\theta}' - DVD + G, \ D(0) = D_0,$$
 (6)

где матрица V характеризует процесс наблюдения и зависит от состава измерений и от их точности. Роль фазовых координат играют элементы ковариационной матрицы D. Будем считать, что можно изменять выбор наблюдаемых параметров, тогда матрицу V можно рассматривать как управляющую функцию на которую наложены ограничения $V \in U(t)$, где U(t) – замкнутое множество матриц.

Рассмотрим функционал

$$J = \int_{t_0}^{T} \phi(V, t) dt.$$

Он характеризует стоимость или длительность наблюдения. Если в любой момент времени либо вести наблюдения с фиксированной матрицей V_0 , либо не производить наблюдений. Тогда множество U состоит из двух матриц 0 и V. Если при этом $\phi(0,t)=0,\ \phi(V_0,t)=1,$ то функционал J будет равен длительности наблюдения. Теперь можно поставить задачу об оптимизации наблюдений как обычную задачу оптимального управления.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (грант № 12-01-00752)

Список литературы

- 1. Дынкин Е. Б., Юшкевич А. А. Управляемые марковские процессы и их приложения. М.: Наука, 1975.
- 2. Karelin V. V. Adaptive optimal strategies in controlled Markov processes // Advances in Optimization Proceedings of 6 th French-German Colloquium of Optimization. FRG. 1991. C. 518–525.

СХЕМА ПОЛНОГО УСПОКОЕНИЯ СИСТЕМЫ С ЗАПАЗДЫВАНИЕМ ОБРАТНОЙ СВЯЗЬЮ ПО СОСТОЯНИЮ

B.B. Карпук¹, A.B. Метельский²

¹ Белорусский национальный технический университет, энергетический факультет, Независимости 65, 220013 Минск, Беларусь mathematics1@bntu.by

² Белорусский национальный технический университет факультет информационных технологий и робототехники ametelskii@gmail.com

Введение. Дана дифференциальная система управления с соизмеримыми запаздываниями

$$\dot{x}(t) = \sum_{i=0}^{m} A_i x(t - ih) + bu(t), t > 0; \ x(t) = \eta(t), t \in [-mh, 0].$$
 (1)

Здесь x-n-вектор-столбец решения $(n \ge 2)$; A_i — постоянные $n \times n$ -матрицы, $i=\overline{0,m}$ $(m \ge 1)$; b — постоянный n-вектор; 0 < h — постоянное запаздывание; начальное состояние η из пространства кусочнонепрерывных n-вектор-функций; u — скалярное управление. Не ограничивая общности, полагаем, что $b=e_n=[0;\ldots;0;1]'$, и что последняя строка матрицы $A(\lambda)=A_0+A_1\lambda+\ldots+A_m\lambda^m$ — нулевая $(\lambda\in\mathbb{C})$ — множество комплексных чисел). Этого всегда можно достичь невырожденным преобразованием переменных $\tilde{x}=Tx$ $(Tb=e_n)$ и выбором управления в виде $(u_1$ — новое управление)

$$u(t) = -e'_n \sum_{i=0}^m T A_i T^{-1} \tilde{x}(t - ih) + u_1(t), \ t > 0.$$

В докладе изучается задача построения регулятора по типу обратной связи с сосредоточенными запаздываниями, обеспечивающего замкнутой системе полное успокоение

$$x(t) \equiv 0, u(t) \equiv 0, t \geq t_1,$$