For finitely sets $(A_i)_{i \in I}$ a generalization of the separation law holds and it can be shown, that a separating set can be constructed from Demyanovdifferences of the sets A_i .

We consider conditional minimality: A pair $(A, B) \in \mathcal{K}^2(X)$ is called convex if $A \cup B$ is a convex set and a convex pair $(A, B) \in \mathcal{K}^2(X)$ is called *minimal convex* if for any convex pair $(C, D) \in [A, B]$ the relation $(C, D) \leq (A, B)$ implies that (A, B) = (C, D).

It is possible to consider the problem pairs of convex sets in the more general frame of a commutative semigroup S which is ordered by a relation \leq and which satisfies the condition: if $as \leq bs$ for some $s \in S$, then $a \leq b$. Then $(a, b) \in S^2 = S \times S$ corresponds to a fraction $a/b \in S^2$ and minimality to a relative prime representation of $a/b \in S^2$.

References

- 1. Demyanov V.F., Rubinov A.M. Quasidifferential calculus.Optimization Software Inc., Publications Division, New York, 1986.
- Pallaschke D., Urbański R. Pairs of Compact Convex Sets Fractional Arithmetic with Convex Sets. Mathematics and its Applications, Vol. 548, Kluwer Acad. Publ. Dordrecht, 2002.

DEMYANOV DIFFERENCE IN INFINITE DIMENSIONAL SPACES J. Grzybowski¹, D. Pallaschke², R. Urbański¹

¹ Faculty of Mathematics and Computer Science, Adam Mickiewicz University Umultowska 87, PL-61-614 Poznań, Poland

{jgrz,rich}@amu.edu.pl

² Institute of Operations Research, University of Karlsruhe Kaiserstr. 12, D-76128 Karlsruhe, Germany diethard.pallaschke@kit.edu

We generalize the Demyanov difference to the case of real Hausdorff topological vector spaces.

For $A, B \subset X$ we define upper difference $\mathcal{E}_{A,B}$ as the family $\mathcal{E}_{A,B} = \{C \in \mathcal{C}(X) | A \subset \overline{B+C}\}$, where $\mathcal{C}(X)$ is the family of all nonempty closed convex subsets of the topological vector space X. We denote the family of inclusion minimal elements of $\mathcal{E}_{A,B}$ by $m\mathcal{E}_{A,B}$. We define a new subtraction by $A \stackrel{D}{-} B = \overline{\text{conv}} \bigcup m\mathcal{E}_{A,B}$. We show that $A \stackrel{D}{-} B$ is a generalization of Demyanov difference.

We prove some clasical properties of the Demyanov difference.

For a locally convex vector space X and compact sets $A, B, C \in \mathcal{C}(X)$ the Demyanov-Difference has the following properties: (D1) If A = B + C, then $C = A \stackrel{D}{-} B$. (D2) $(A \stackrel{D}{-} B) + B \supset A$. (D3) If $B \subset A$, then $0 \in A \stackrel{D}{-} B$. (D4) $(A \stackrel{D}{-} B) = -(B \stackrel{D}{-} A)$ (D5) $A \stackrel{D}{-} C \subset (A \stackrel{D}{-} B) + (B \stackrel{D}{-} C)$.

In the proofs we use a new technique which is based on the properties given in the following lemma.

Let X be a Hausdorff topological vector space, A be closed convex, B bounded subset of X. Then for every bounded subset M we have

$$\overline{A+M} = \bigcap_{C \in \mathcal{E}_{A,B}} \overline{B+C+M}.$$

We also give connections between Minkowski subtraction and the union of upper differences.

Let X be a Hausdorff topological vector space, A be closed convex, B bounded subset of X. Then $A - B = \bigcap \mathcal{E}_{A,B}$ where $A - B = \{x \in X | B + x \subset A\}$.

We show that in the case of normed spaces the Demyanov difference coincides with classical definitions of Demyanov subtraction.

COMPLETENESS IN MINKOWSKI-RÅDSTRÖM-HÖRMANDER SPACES J. Grzybowski, H. Przybycień

Faculty of mathematics and computer science, Adam Mickiewicz University ul. Umultowska 87, 61-614 Poznań, Poland {jgrz,hubert}@amu.edu.pl

A Minkowski-Rådström-Hörmander space \widetilde{X} is a quotient space over the family $\mathcal{B}(X)$ of all nonempty bounded closed convex subsets of a Banach space X. We prove in that a metric d_{BP} (Bartels-Pallaschke metric) is the strongest of all complete metrics in the cone $\mathcal{B}(X)$ and Hausdorff metric d_H is the coarsest of them. Our results follow from for more general case of a quotient space over an abstract convex cone S with complete metric d. We also extend a definition of Demyanov's difference (related to Clarke's subdifferential) of finite dimensional convex sets $A \stackrel{D}{-} B$ to infinite dimensional Banach space X and we prove in that Demyanov's metric generated by such extension, is complete.