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Inroduction. Semi-Infinite Programming (SIP) deals with extremal
problems that involve infinitely many constraints in a finite dimensional
space. Due to the numerous theoretical and practical applications, today
semi-infinite optimization is a topic of a special interest. Since the most
efficient methods for solving optimization problems are usually based on
optimality conditions that permit not only to test the optimality of a given
feasible solution, but also to find the better direction to optimality, the
study of these conditions is essential. Usually the optimality conditions
are formulated under certain assumptions that are called Constraint
Qualifications (CQ) [1, 2]. On the other hand, the optimality conditions
that do not use too strong additional assumptions are of special interest
since they are more universal and have more applications.

1. Problem statement. Consider a convex Semi-Infinite Programming
problem in the form

(P ) : min
x∈Rn

c(x) s.t. f(x, t) ≤ 0 ∀ t ∈ T,

with a finitely representable compact index set T = {t ∈ R
s : gk(t) ≤

0, k ∈ K}, |K| < ∞.
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We suppose that the objective function c(x), x ∈ R
n, is convex; for all

t ∈ T, the constraint function f(x, t), x ∈ R
n, is convex w.r.t. x; functions

f(x, t), gk(t), t ∈ R
s, k ∈ K, are twice continuously differentiable w.r.t. t.

Our main aim is to formulate and test new CQ-free optimality conditions
for the convex SIP problems (P) on the base of approach proposed in [3].

2. Definitions and main result. Denote by X the feasible set of
problem (P ): X = {x ∈ R

n : f(x, t) ≤ 0, ∀t ∈ T}.

Definition 1. An index t̄ ∈ T is called an immobile one if f(x, t̄) = 0
for all x ∈ X.

Denote by T ∗ the set of all immobile indices in problem (P ). Let t̄ ∈ T ∗.
It is evident that for all x ∈ X the vector t̄ solves the following lower level
problem:

LLP (x) : max
t

f(x, t) s.t. gk(t) ≤ 0, k ∈ K.

Given t ∈ T , denote by Ka(t) ⊂ K the set of indices that are active at t,
and let L(t) be the linearized cone of feasible directions in the index set T
at t:

Ka(t) := {k ∈ K : gk(t) = 0}, (1)

L(t) := {l ∈ R
s : l′∂gk(t)/∂t ≤ 0, k ∈ Ka(t)}.

Assumption 1. The constraints of LLP (x) satisfy Mangasarian-
Fromovitc constraint qualification [4] at every t̄ ∈ T ∗.

For x ∈ X, t ∈ T , l ∈ L(t), let us define the following functions with
whose help one can formulate optimality conditions for problem LLP (x):

F1(x, t, l) := l′∂f(x, t)/∂t, F2(x, t, l) := l′(∂2f(x, t)/∂t2)l+val(LP (x, t, l)).

Here val(LP (x, t, l)) is the optimal value of the cost function in the
problem

LP (x, t, l) : max
ω

ω′∂f(x, t)

∂t
, s.t. ω′∂gk(t)

∂t
≤ l′

∂2gk(t)

∂t2
l, k ∈ Ka(t).

Definition 2. Given an immobile index t̄ ∈ T ∗ and a nontrivial
feasible direction l̄ ∈ L(t̄), let us define the immobility order q(t̄, l̄) of
t̄ along l̄ as follows:
1) q(t̄, l̄) = 0 if ∃ x̄ = x(t̄, l̄) ∈ X such that F1(x̄, t̄, l̄) < 0;
2) q(t̄, l̄) = 1 if F1(x, t̄, l̄) = 0 for all x ∈ X and ∃ x̄ = x(t̄, l̄) ∈ X such
that F2(x̄, t̄, l̄) < 0;
3) q(t̄, l̄) > 1 if F1(x, t̄, l̄) = 0 and F2(x̄, t̄, l̄) = 0 for all x ∈ X.
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Assumption 2. Suppose that q(l, t) ≤ 1, ∀l ∈ L(t) \ {0}, ∀t ∈ T ∗.

Assumption 2 implies that the set T ∗ consists of a finite number of
elements:

T ∗ = {t∗j , j ∈ J∗} with some finite index set J∗.

Given t∗j ∈ T ∗, consider the set L(j) := L(t∗j), where L(t) is defined in
(1). The set L(j) is a polyhedral cone in R

s. Then, according to the known
results on the polyhedral cone’s decomposition, there exist vectors

bi(j), i ∈ P (j), ai(j), i ∈ I(j), |P (j)|+ |I(j)| < ∞,

such that the set L(j) admits a finite representation in the parametric
form as follows:

L(j) = {l ∈ R
s : l =

∑

i∈P (j)

βibi(j) +
∑

i∈I(j)

αiai(j), αi ≥ 0, i ∈ I(j)}.

Denote I∗(j) : = {i ∈ I(j) : q(t∗j , ai(j)) = 0} and I0(j) := I(j)\I∗(j);

L(x, j) : = {l ∈ L(j) : αi = 0, i ∈ I∗(j); F2(x, t
∗
j , l) = 0}.

Theorem 1. Let Assumptions 1, 2 be fulfilled for the convex SIP
problem (P ). Then a vector x0 ∈ X is optimal in this problem if and
only if there exist indices and directions

tj ∈ {t ∈ T : f(x0, t) = 0} \ T ∗, j ∈ Ja;

l
(k)
j ∈ L(x0, j), k = 1, kj, j ∈ J∗,

∑

j∈J∗

kj + |Ja| ≤ n,

such that the vector x0 is optimal in the following convex Nonlinear
Programming (NLP) auxiliary problem:

min
x∈Rn

c(x)

s.t. f(x, t∗j) = 0, F1(x, t
∗
j , bi(j)) = 0, i ∈ P (j);

F1(x, t
∗
j , ai(j)) = 0, i ∈ I0(j);

F1(x, t
∗
j , ai(j)) ≤ 0, i ∈ I∗(j); F2(x, t

∗
j , l

(k)
j ) ≤ 0, k = 1, kj, j ∈ J∗,

f(x, tj) ≤ 0, j ∈ Ja.

Study of properties of the NLP auxiliary problem permits us to
formulate new CQ-free optimality conditions for the SIP problem under
consideration. These conditions have the form of explicit optimality
criteria, taking the form of sufficient optimality conditions when
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Assumptions 1, 2 are relaxed. Thanks to their constructive nature, the
conditions obtained can be easily verified. Since the Assumptions assumed
in this paper are weaker than the known from literature constraint
qualifications for SIP problems, the new optimality conditions can be
applied for a more general case of SIP problems.
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NONLINEAR POSITIONAL DIFFERENTIAL GAME

IN THE CLASS OF MIXED STRATEGIES
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The feedback control problem for a nonlinear dynamic system under lack
of information on disturbances is considered. The problem on minmax-
maxmin of ensured result for a given positional quality index is formalized
into an antagonistic two-player differential game in the framework of
the concept of the Sverdlovsk (Ekaterinburg) school on the theory of
control and differential games. The problem is solved in the class of mixed
positional strategies. The existence of a solution for considered differential
game – of the value of the game and the saddle point – is determined. The
solution of a problem is based on application of the appropriate models-
leaders, the so-called methods of minimax and maximin extremal shift [2]
and the method of upped convex hulls [1]. Although we use probabilistic
mechanisms in formation of control, the final result is guaranteed with
probability arbitrary close to one. Results of the study are applied to
the control model [3] of a mechanical device. It simulates a controller in
the space equipment used for docking and landing of modules. Simulation
outputs are presented.
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