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Consider the abstract linear control system
y' = Ay + Bu,

where A generates a Cy-semigroup on X and B € L(U, X), U and X being
Banach spaces. The minimum energy to bring x € X to zero in time £ > 0
is

E(t, ) = nf{|lull;u € L>(0,;U), y(t, x,u) = 0}.

We study the behavior of £(t, x), when t — oco. In fact, we get estimation
of the type
Et,z) < ()|,

with explicit y(t), for ¢ large. Our results are related to [2], [1], and [3].
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The most important tool used in optimization is that of directional
derivative or different generalizations of it. For the class of directionally
differentiable functions in the n-dimensional space, a necessary condition
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for an unconstrained minimum is f’(z*,g) > 0 Vg € R™ while a necessary
condition for an unconstrained maximum is f'(z*,¢9) <0 Vg € R" where
f'(x, g) is the derivative of the function f at a point z € R™ in a direction

The above stated conditions become efficient for special classes
of directionally differentiable functions. For example, in the case of
convex and max-type functions, f'(z,g) takes the form f'(z,g9) =
MaX,cof(z) (v, g), where df () is the subdifferential of the function f at
a point x € R". Then the above necessary condition for a minimum
is equivalent to the inclusion 0, € Jf(z*). If a point zp € R" is
given, to check this condition, one can find min,cys@,) ||2|| = [|2(z0)]]|-
If ||z(z0)|| = 0, it means that x satisfies the necessary condition.

In the case of an arbitrary directionally differentiable function, by means
of the notions of upper and lower exhausters (see [2]), the problem of
verification of optimality of a given point is also reduced to that of checking
the condition 0 € C' for one or several convex sets C'. In turn, the problem
of verifying this condition is reduced to that of finding the point of C' which
is the nearest to the origin. If the origin does not belong to C, we easily
find a descent direction (and after testing all sets C, one find a steepest
descent direction). Then it is possible to construct a numerical method.
This approach was developed in [1,2,3].

Another approach is based on the so-called alternance idea coming
back to P.L.Chebyshev. In [4] this approach was extended to study
mathematical programming problems.

For the classical Chebyshev approximation problem (the problem of
approximating a function f(¢) : G — R by a polynomial P(t)),
the condition for a minimum takes the so-called alternance form: for
a polynomial P*(t) to be a solution to the Chebyshev approximation
problem, a collection of points {¢; | t; € G} should exist at which the
difference P*(t) — f(t) attains its maximal absolute value with alternating
signs. This condition can easily be verified, and if it does not hold, one can
find a "better" polynomial. In the present talk, it will be demonstrated
that the alternance form of the necessary conditions for a minimum is
valid not only for Chebyshev approximation problems, but also in the
general case of directionally differentiable functions. Both unconstrained
and constrained optimization problems are discussed. In many cases a
constrained optimization problem can be reduced (via Exact Penalization
Techniques) to an unconstrained one.

The work was supported by the Russian Foundation for Basic Research
(RFBR) under Grant RFFI No 12-01-00752.
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In [1] a family ® := {¢} of sublinear functions ¢ : R" — R was called a
primal upper exhauster of a positively homogeneous function p : R" — R
if

p(z) = inf p(x) for all x € R™. (1)

ped

Similarly, a family U := {4} of superlinear functions ¢ : R” — R
was called a primal lower exhauster of a positively homogeneous function
p:R" — Rif

p(z) = supy(x) for all z € R". (2)
e

The primal exhausters were introduced by A.M. Rubinov (see [2]) and
were entitled the exhaustive families of upper convex (lower concave)
approximations. The term “exhauster” was invented by V.F. Demyanov
[3]. In Demyanov’s terminology an upper exhauster of p is the family
of subdifferentials {J¢ |y € ®} corresponding to a family of sublinear
functions ® that satisfies (1). In [1] the family {0 | @ € ®}, where @ is a
primal upper exhauster, was called a dual upper exhauster and the family
{0¢ |y € U}, where @ is a primal lower exhauster, was called a dual lower
exhauster.

In [2] was shown that a positively homogeneous function p : R” — R is
continuous on R" if and only if it admits both an upper exhauster and a
lower one.
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