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Theoretical interpretation of the experiments on Parametric
X-ray radiation in case of backward diffraction.
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Abstract

The spectral-angular and angular distributions of parametric X-radiation for case of backward
diffraction (particular case of Bragg geometry scheme) is discussed. It is shown that in case of
Bragg geometry it is necessary to use dynamical approach for PXR consideration. The comparison

of the theory and experiment is carried out.

Introduction

Since the theoretical prediction of Parametric X-radiation (PXR) in crystals [[[]-
[ and its experimental observation in 1985 [f, fij a great number of experiments
dedicated to studying of PXR characteristics has been carried out. Most of these
experiments were performed in schemes of Laue geometry (Fig.1a) and so called ex-
tremely asymmetric geometry, in which PXR photons were emitted from the crystal
through the lateral surface of crystal plate at the right angle relative to the electron
beam velocity ¢ (see Fig.1b).

In this case for theoretical interpretation of experimental data it is sufficient to
use simplified by the special way exact theory, developed in [[, §]. Specified simplifi-
cation of the theory is similar in some details to kinematical approximation used by
Ter-Mikaelyan for description of resonance radiation of charged particle in medium
with periodical dialectical permittivity [[J]. Let us remind, that the typical property
of resonance radiation (and its main difference from PXR) is dependence of emit-
ted photons energy on the energy of charged particles, while the PXR frequency is
constant and determines only by the crystal lattice period and direction of charged
particle propagation relative to crystallographic planes. However, the attempts of
using some simplified variants of the theory for explanation of Bragg geometry ex-

periments (see Fig.1c) appeared to be unsuccessful. In this paper it is shown that
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Figure 1: The schemes of different geometries of PXR observation: a — Laue, b —

Extremely asymmetrical, ¢ — Bragg.



for theoretical description of experiments in Bragg scheme it is necessary to use
dynamical theory, developed in [T, [[1].

In that way, there’s a series of experiments on PXR measurement in scheme
of Bragg geometry, which did not get any theoretical interpretation. In the this
work we present and discuss the results of numerical calculations of spectral-angular
and angular distributions of PXR in backward geometry, which is a particular case
of Bragg geometry scheme, for the experimental parameters corresponding to the
Mainz microtrone [[J]. The experimental data were kindly given to us by professor
H.Backe with colleagues, and as far as they are not published, we don’t present
them in this paper. In addition, we performed calculations of angular distributions

for the experiment [[J], which was also made in the backward geometry.

1 General expressions for PXR spectral-angular
intensity in Bragg diffraction scheme

The spectral- angular distribution of radiation, generated by the charged particle
at pass through the crystal plate into the maximum at the angle 20z (65 — angle
between the particle velocity vector ¥ and planes corresponding to vector 7) relative

to the direction of its velocity in scheme of Bragg diffraction is given by the following
expression [T, [4]:
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where e -particle charge, Cs = ése.5, €71 || [ET"], e || [Eeﬁl}f the unit vectors
of radiation polarization, €, — the unit polarization vector of incident wave, k;s =
k+ %5“5]\7, N - unit vector of the normal to the entrance surface of a crystal plate,
directed inside the crystal, xo, Xr, X_r — Fourier-components of complex crystal

susceptibilities,
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ap is the Bragg-off parameter (ap = 0 in case of exact fulfillment of Bragg’s con-
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dition) 31 = v0/71, Yo = Ay N, iy = F, fiyr = IEi—FI’ Y1 = 74, N, Lo - the thickness

of the crystal along the direction of a charged particle velocity Ly = L/~y. The

expression (1) has transparent physical sense: in case of two-beam diffraction the
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Every item in (1) describes well-known radiation amplitude A, of photon arising

as a result of charged particle movement through the crystal target of L thickness.

Such as there are two reflex indexes, that the total radiation density expressed

through the square of module of amplitudes sum, that is sifi% ~ A + Aoyl

Such as x{ < 0 though from the Vavilov-Cherenkov condition it follows that only
for a single root (= 1) the real part of refraction index n’ > 1. As a result the
difference w — k1,47 can turn into zero and the term of the expression (1) comprising
this difference in a denominator, begins to grow proportionally L. At first sight it
means that the term, containing this difference (quasi-Cherenkov term), will give
the main contribution into the radiation when increasing the thickness of the crystal
along the particle velocity. However, in case of Bragg diffraction there’s a consider-
able distinction of physical phenomenon, taking place in the crystal, from the case
of Laue diffraction, namely, in some area of frequencies and angles the phenomenon
of total reflection takes place. In this area of angles and frequencies the wave vectors
in crystal lattice become imaginary values at conditions of absorption absence. In
the area of total reflection, stipulated by the existence of the heterogeneous wave
in the crystal, it is necessary to take into account of both dispersion branches dur-
ing calculation of the radiation intensity in Bragg diffraction scheme. Although the
structure of expression (1) is very simple, but in order to obtain quantitative data
it is necessary to performed correct calculations on formula (1) with taking into
account all terms of it, since presence oscillating ones and its interference can easily

bring to wrong results if some terms are neglected.
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Figure 2: The scheme of backward diffraction experiment, the angular distribution is

taken as the function of the tilt angle .

2 PXR in backward geometry

Recently there were conducted the experiments on observation of X-ray radiation,
generated by the charged particles in scheme of backward diffraction [[J] - see the
Fig 2.

There were taken the angular dependence of radiation intensity as the function
of the tilt angle v relatively the direction of charged particles movement, for the
tilt angle v = 0 this direction coincides with the direction of charged particles
movement, the Bragg’s angle 65 = 90°, the radiation is detected at the angle 205 =
180° relative to this direction. At rotation of the crystal at the angle 1) the Bragg’s
angle becomes equal to 8 = 0p + 1, the radiation angle — 20'; = 205 + 0x, where
Ox = 2.

The scheme of this kind (Fig.2) presents a keen interest, because the theoret-
ical description of the radiation intensity cannot be given in scope of kinematical
diffraction, such as existence of the inhomogeneous wave brings to the possibility

of realization of the effect of the total reflection. Let us make a comparison of
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Figure 3: The spectra of the PXR radiation, received for the tilt angles of the crystal:
1 - 0,3 mrad; 2 - 2,5 mrad; 3 - 5,0 mrad.

numerical calculations results basing on the formula (1) with the results, received
in the experiment on the microtone in Mainz. The measurements were taken in a
silicon crystal plate thick L = 525 pm, the energy of electron beam 855 MeV. The
temperature of the target was maintained at 120 K. There was studied the radiation
in reflexes (111), (333), (444), (555), (777), (888). At the Fig.3 there are presented
spectral-angular distributions of PXR for the reflex (444), received basing on the
formula (1) for the tilt angles of the crystal 0,3 mrad, 2,5 mrad and 5 mrad.

As far as the tilt angle gets greater there’s a shift of the spectrum towards increas-
ing of the frequency. The narrow maximum in the radiation spectrum corresponds
at calculation by (1) to the term, proportional to m, which denominator can
turn into 0, and so this peak can be interpreted as conditioned by quasi-Cerenkov
radiation mechanism.

With increasing of the tilt angle of the crystal ¢ (what corresponds to the polar
angle of the radiation 2¢) the spectral-angular intensity of this maximum increases

and at some angle ~ 9,, = /772 — xg (v — Lorentz factor of charged particle)

becomes to exceed the intensity of radiation maximum, intensity of which can be re-
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Figure 4: The spectrum of the radiation, calculated by the formula (1) for 1 - y = 1;

2 - 44 =2; 3 - the sum radiation.

ceived using simplified theory [[J] based on simple presentation of ordinary transition
radiation diffraction on crystallographic planes, and maximum corresponds to area
of maximal effectiveness of the X-ray reflection on the crystal surfaces (the radiation,
emitted at angles and frequencies, for which Vavilov-Cherenkov condition does not
fulfill, however the coefficient of the X-ray radiation reflection is maximum). It’s
necessary to note, that the spectral width of the quasi-Cerenkov maximum is de-

Aw c

fined by the expression 22 ~ ——<¢_—— [I(], here wp =

wB LeffwB sin2 93

TC
dsinfp

— Bragg frequency,
d — interplanar distance, Lesr = min (Lo, Laps), Laps — absorption length, while the
width of maximum, corresponds to area of total reflection ﬁ—; ~ %

For the reflex (444) the width of the quasi-Cherenkov maximum is in order
4 x 10~"wp, what more than one degree narrow of the width of peak in total
reflection area, equal to ~ 5 x 107%wp. At the Fig.4 for the reflex (555) there
were demonstrated the spectral-angular distributions of ”forming” the sum radia-
tion components (the radiation, corresponding to different branches of dispersion
curves (u = 1,2). It’s clear from the picture, that the quasi-Cherenkov maximum

belongs to the first dispersion branch pu = 1.
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Figure 5: The angular distribution in the reflexes: 1 - (111), the energy resolution of the detector
Aw = 358V, 2 - (333), Aw =402 eV, 3 - (444), Aw =400 eV.

The distribution at the Fig.4 was received for the tilt angle of the crystal v = 0,3
mrad, at such angles the intensity of the maximum, corresponding to area of total
reflection is considerably exceeding the intensity of the quasi-Cherenkov maximum.
The angular intensity at such angles is fully defined by total reflection area, as the
frequency’s width of this maximum is much greater the width of quasi-Cherenkov
maximum.

At the fig.5 there are presented the angular distributions of the radiation as a
function of the tilt angle for reflexes (111), (333) and (444). The form of distributions
coincides well with the experimental curves, the value of the angular distribution in
the maximum for the reflex (111) is different from the experimental one at 10%, for
the reflex (333) at 18%, for (444) - at 21%. So, this difference appears at small angles
- less and order of 0,3 mrad. The difference increases with increasing of the energy
of photons being emitted. Possible explanation of this effect can be the influence of
the multiple scattering, and exactly, the additional contribution in the intensity of
the bremsstrahlung radiation, emitted at small angles.

When decreasing the energy of charged particles, the contribution of the bremsstrahlung



radiation increases considerably. This is explained by fact that coherent length of

bremsstrahlung radiation Lg, = 35—2, 6?2 - root-mean-square angle of multiple scat-

tering (MS), becomes less then coherent length of PXR. In the paper [L3] there is de-

scribed an experiment also in backward geometry, only at the energy of the electron
beam one degree lower (E, = 80,5 and 86,5 MeV). In this energy region coherent
length of bremsstrahlung radiation Lg, < L, and the account of bremsstrahlung ra-
diation contribution is very important. Our calculations showed that the intensity of
angular distribution in the maximum, received by the integration of the expression
(1) over frequency in the range Aw = 10 3wp, is two times lower the experimental
value. However, it is necessary to take into consideration the contribution of the
bramsstrahlung radiation into the sum radiation at such energies of electron beam
(estimations were made basing on the formulas from the paper [[0]. In that way,
it’s possible to state that received results for the angular intensity of the radiation

agree well with the experimental data.

Conclusion

Conducted comparisons of theoretical and experimental distributions of PXR in the
backward geometry showed a good coincidence of results of the theory, developed
in [[J] and the experiment. It allows to state, that only the approach of dynam-
ical theory of the diffraction allows to interpret experiment. The other simplified
approaches, such as kinematical theory, approach in which diffraction maximum is
considered as diffracted on crystal planes transition radiation (it is called in some
works diffraction transition radiation (DTR)) and which does not take into account
interference between different dispersion branches [, [[§], don’t bring to successful

interpretation of experimental data.
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