ПАРАЛЛЕЛЬНАЯ РЕАЛИЗАЦИЯ АЛГОРИТМА ОПТИМИЗАЦИИ ДЛИТЕЛЬНОСТЕЙ ПОСЛЕДОВАТЕЛЬНО-ПАРАЛЛЕЛЬНОГО ВЫПОЛНЕНИЯ ПЕРЕСЕКАЮЩИХСЯ МНОЖЕСТВ ОПЕРАЦИЙ

А. Б. Долгий ¹, Г. М. Левин ², Б. М. Розин ², И. В. Кособуцкий ²

¹LIMOS UMR CNRS 6158, Ecole des Mines de Saint-Etienne, France E-mail: dolgui@emse.fr
²Объединенный институт проблем информатики НАН Беларуси Минск, Беларусь E-mail: {levin, rozin, kasabutski}@newman.bas-net.by

Рассматривается задача оптимизации длительностей последовательнопараллельного выполнения пересекающихся множеств операций. Сформулирована математическая модель задачи и описан метод ее решения, основанный на идеях декомпозиции и динамического программирования. Предложен параллельный алгоритм и реализующая его программа поиска решения с использованием многопроцессорной вычислительной системы. Приведены результаты численных экспериментов.

Ключевые слова: комплекс операций, оптимизация длительностей, параллельные вычисления.

Постановка задачи

Значительное внимание в последние десятилетия в литературе уделялось различным аспектам планирования выполнения комплексов операций в организационных и производственных системах различного назначения [1–3]. Данная статья посвящена обобщению предложенного в [4] метода оптимизации длительностей последовательно-параллельного выполнения пересекающихся множеств операций на более общий случай, а также параллельной реализации этого метода, ориентированной на суперкомпьютерные конфигурации СКИФ [5].

Рассматривается циклически повторяющийся процесс выполнения комплекса **I** из n различных составных операций (далее — с-операций). Каждая с-операция $i \in I = \{1, \ldots, n\}$ образована некоторым подмножеством J_i множества J элементарных операций (далее — э-операций). Комплекс может включать n_i идентичных с-операций $i \in I$. В свою очередь, в состав с-операции i может входить m_{ij} идентичных э-операций $j \in J_i$, причем подмножества семейства $\{J_1, \ldots, J_i, \ldots, J_n\}$, образующие с-операции комплекса, могут пересекаться. Все с-операции комплекса выполняются последовательно, в то время как все э-операции, входящие в состав каждой с-операции, выполняются одновременно. Таким образом, длительность каждой с-операции равна наибольшей из длительностей входящих в нее э-операций.

Для каждой э-операции $j \in J$ задан диапазон $[t_{1j}, t_{2j}]$ возможных длительностей ее выполнения и определенная на нем функция $f_j(t_j)$ зависимости затрат на выполнение этой операции от искомой длительности t_j ее выполнения. Стоимость выполнения каждой из с-операций i в целом помимо суммарной стоимости выполнения составляющих ее э-операций включает и дополнительные затраты $\psi_i(T_i)$, возрастающие с ростом длительности T_i ее выполнения, $i \in I$.

Требуется найти значения длительностей $t_j \in [t_{1j}, t_{2j}]$ выполнения всех э-операций $j \in J$, минимизирующие суммарные затраты на выполнение всех с-операций комплекса при ограничении на суммарное время их выполнения. Таким образом, исходная задача (назовем ее задачей **A**) заключается в нахождении такого вектора $t = (t_j \mid j \in J) \in \mathbf{t} = \prod_{j \in J} [t_{1j}, t_{2j}]$, которому соответствует наименьшее значение функ-

ции общих затрат

$$F(t) = \sum_{i \in I} n_i (\psi_i (\max_{j \in J_i} t_j) + \sum_{j \in J_i} m_{ij} f_j(t_j)) = \sum_{i \in I} n_i \psi_i (\max_{j \in J_i} t_j) + \sum_{j \in J_i} p_j f_j(t_j),$$

при условии

$$\sum_{i\in I} n_i \max_{j\in J_i} t_j \le T_0,$$

где T_0 — заданная максимально допустимая суммарная длительность выполнения всех с-операций, $p_j = \sum_{i \in I_j} n_i m_{ij}$ и $I_j = \{i \in I \mid j \in J_i\}.$

Предполагается, что множество I всех с-операций неразделимо на подмножества так, чтобы любые с-операции из разных подмножеств не пересекались по э-операциям, поскольку иначе исходная задача может быть разбита на аналогичные автономные подзадачи меньшей размерности относительно каждого из таких подмножеств с-операций. Очевидно, что в рамках данной задачи для каждого $j \in J$ достаточно рассматривать только такие $t_j \in [t_{1j}, t_{2j}]$, для которых не существует таких $t_j \in [t_{1j}, t_{2j}]$, что $t_j < t_j$ и $f_j(t_j) \le f_j(t_j)$. Поэтому в дальнейшем для простоты изложения предполагается также, что функции $f_j(t_j)$ являются убывающими на $[t_{1j}, t_{2j}]$ для всех $j \in J$.

Метод решения

Для решения задачи **A** предлагается метод, основанный на сочетании идей параметризации, декомпозиции и динамического программирования.

Введем вектор $T=(T_1,\ldots,T_i,\ldots,T_n)$, компонента T_i которого определяет длительность выполнения с-операции $i\in I$, т. е. $T_i\in \mathbf{T}_i=[\max_{j\in J_i}t_{1j},\max_{j\in J_i}t_{2j}]$. Положим

$$\prod_{i \in I} \mathbf{T}_i = \mathbf{T}$$
 и $t'_j(T) = \min\{t_{2j}, \min\{T_i \mid i \in I_j\}\}$, где $I_j = \{i \in I \mid j \in J_i\}$.

Поскольку функции $f_j(t_j)$ являются убывающими на отрезках $[t_{1j}, t_{2j}]$ для всех $j \in J$, то вместо задачи **A** можно рассматривать следующую параметризованную задачу **B**:

$$\Phi(T) = \sum_{i \in I} n_i \psi_i(T_i) + \sum_{j \in J} p_j f_j(t'_j(T)) \rightarrow \min,$$

$$\sum_{i \in J} n_i T_i \leq T_0, \quad T \in \mathbf{T}.$$

Задачи **A** и **B** эквивалентны в том смысле, что если t^* – решение задачи **A**, то $T(t^*) = (T_1(t^*), \ldots, T_n(t^*))$ – решение задачи **B**, где $T_i(t^*) = \max_{j \in J_i} t_j^*$. В свою очередь, если T^* – решение задачи **B**, то $t_i'(T^*)$ – решение задачи **A**.

Для решения задачи В можно использовать следующую декомпозиционную схему:

• на нижнем уровне при фиксированном $\lambda \in [0,1]$ отыскивается значение $T^*(\lambda) = (T^*_i(\lambda)|\ i \in I)$ вектора $T \in \mathbf{T}$ с наименьшим значением функции Лагранжа (задача $\mathbf{B1}(\lambda)$):

$$L(\lambda, T) = \sum_{i \in I} n_i (\lambda T_i + (1 - \lambda) \psi_i(T_i)) + (1 - \lambda) \sum_{i \in J} p_i f_i(t_j'(T)),$$

а на верхнем — наименьшее значение λ^* множителя $\lambda \in [0,1]$ с $O(\lambda) = \sum_{i \in I} n_i T_i^*(\lambda) \leq T_0$.

При наличии процедуры решения задачи $\mathbf{B1}(\lambda)$ для нахождения $\lambda^* \in [0,1]$ можно воспользоваться известными методами поиска корня уравнения с монотонной левой частью. При этом если $O(0) \leq T_0$, то $T^*(0)$ – решение задачи \mathbf{B} , если $O(1) > T_0$, то задача \mathbf{B} (а следовательно и исходная задача \mathbf{A}) не имеют решения. В остальных случаях $T^*(\lambda^*)$ можно принять в качестве решения задачи \mathbf{B} .

Для описания возможного подхода к решению задачи $\mathbf{B1}(\lambda)$ введем следующие вспомогательные функции, где $\Omega \subseteq J, \ Z' \subseteq Z \subseteq I \$ и $\tau, \tau' \in \mathbb{R}^+$:

$$\begin{split} t_j''(\tau) &= \min\{t_{2j}, \tau\}; \quad t_1(\Omega) = \max_{j \in \Omega} t_{1j}; \quad t_2(\Omega) = \max_{j \in \Omega} t_{2j}; \\ J(Z) &= \bigcup_{i \in Z} J_i; \quad \widetilde{J}\left(Z, Z'\right) = J(Z) \setminus J(Z'); \\ \phi(\lambda, Z, Z', \tau) &= \sum_{i \in Z \setminus Z'} n_i (\lambda \tau + (1 - \lambda) \psi_i(\tau)) + (1 - \lambda) \sum_{j \in \widetilde{J}(Z, Z')} p_j f_j(t_j''(\tau)); \\ \tau(\lambda, Z, Z', \tau') &= \operatorname{argmin} \{\phi(\lambda, Z, Z', \tau) \mid \tau \in [\tau', \max\{\tau', t_2(\widetilde{J}\left(Z, Z'\right))\}]\}. \end{split}$$

Предлагаемый подход к решению задачи ${\bf B1}(\lambda)$ базируется на ее сведении к отысканию кратчайшего пути из начальной вершины некоторого бесконтурного орграфа $({\bf R},{\bf D})$ в одну из его концевых вершин. Начальной вершине орграфа сопоставляется пара $(\varnothing,0)$, а концевым вершинам — пары (I,τ) с различными значениями $\tau\in [t_1(J),t_2(J)]$. Остальным вершинам сопоставляются пары (Z,τ) , где Z — некоторое собственное подмножество с-операций из I, а τ — их принимаемая максимальная длительность, причем каждая из пар (Z,τ) такова, что $\tau\in [t_1(J(Z)),t_2(J(Z))]$ и Z — максимальное по включению множество в том смысле, что не существует другого $Z'\subseteq I$, такого, что $Z\subset Z'$ и J(Z)=J(Z'). В свою очередь, любая дуга $((Z',\tau'),(Z,\tau))\in {\bf D}$ такова, что $Z'\subset Z$ и $\tau\in [\tau',\underline{\tau}(\lambda,Z,Z',\tau')]$, причем не существует другого $Z''\subset I$, такого что $Z'\subset Z''\subset Z$ и $J(Z'')\subset J(Z)$. Дуге $((Z',\tau'),(Z,\tau))$ сопоставляется ее длина $\varphi(\lambda,Z,Z',\tau)$.

Пусть для некоторого $\lambda \in [0,1]$ $P = ((Z_0 = \emptyset, \tau_0 = 0), (Z_1, \tau_1), ..., (Z_k, \tau_k), ..., (Z_{q(P)} = I, \tau_{q(P)}))$ – кратчайший путь в орграфе $(\mathfrak{R}, \mathbf{D})$ из начальной вершины в одну из его концевых вершин, т. е. путь с наименьшим значением $G^*(\lambda)$ функции $G(\lambda, P) = I$

$$= \sum_{k=1}^{q(P)} \varphi(\lambda,\,Z_k,\,Z_{k-1},\,\tau_k). \ \ \text{Положим} \ \ T_i^*(\lambda) = \tau_k \ \ \text{для всех} \ \ i \ \in \ Z_k \setminus Z_{k-1} \ \ \text{и} \ k \ = \ 1,\,\dots\,,\,q \ \ (P).$$

Можно показать, что полученный таким образом вектор $T^*(\lambda) = (T_i^*(\lambda) | i \in I)$ является решением задачи $\mathbf{B1}(\lambda)$, причем $\Phi(T^*(\lambda)) = G^*(\lambda)$.

Для удобства реализации данного подхода вершины графа разбиваются на группы с одинаковым множеством Z. Разработана процедура построения орграфа (\Re , \mathbf{D}), вершины которого организуются в уровни в порядке возрастания |Z| соответствующих групп вершин, а также параллельный алгоритм динамического программирования, который осуществляет вычисление кратчайшего пути в орграфе (\Re , \mathbf{D}) из вершины

 $(\emptyset,0) \in \Re$ в одну из вершин вида $(I,\tau) \in \Re$, по порядку проходя все уровни. Выявленные в ходе вычислений заведомо «бесперспективные» вершины удаляются из дальнейшего рассмотрения. В частности, к таковым относятся вершины $(Z,\tau) \in \Re$, для которых существуют такие $(Z',\tau') \in \Re$, что $Z \subseteq Z', \tau \geq \tau'$ и $H(\lambda,Z,\tau) \geq H(\lambda,Z',\tau')$, где $H(\lambda,Z,\tau) -$ длина кратчайшего пути из начальной вершины орграфа в вершину (Z,τ) .

Ниже приводится краткое описание разработанной параллельной программы, реализующей предложенные алгоритмы для решения исходной задачи ${\bf A}$ на базе описанного подхода.

Параллельная реализация

Модель параллелизма базируется на специальной форме параллелизма по данным: «одна программа – множество потоков данных» (SPMD). В этой модели на каждом процессоре выполняется одна и та же последовательность действий, применяемая к собственному подмножеству элементов структуры данных. Все переменные и массивы размножены на каждый процессор, но вычисления над разными секциями массивов распределены между разными процессорами. Взаимодействие между параллельно выполняющимися процессами организовано посредством обмена сообщениями средствами библиотеки МРІ [6], обеспечивающими достаточно эффективную реализацию для кластеров гомогенных SMP-узлов. Программное обеспечение реализовано для исполнения на BMBC семейства СКИФ [5]. При этом используются коллективные коммуникации, операции редукции, операции группировки данных.

Параллелизм по данным при определении условно-оптимальной вершины в орграфе по схеме динамического программирования реализован распределением витков тесно-гнездового цикла между процессами в коммуникаторе. При этом каждый виток такого параллельного цикла полностью выполняется на одном процессоре. В ходе алгоритма для очередной группы вершин орграфа с одинаковым Z запускается параллельный цикл, в котором одномерный массив длины N допустимых значений длительности τ этой группы вершин распределяется последовательно между P процессорами блоками по $\lfloor N/P \rfloor$ элементов. После вычисления соответствующей секции массива значений функции $H(\lambda, Z, \tau)$ текущей группы вершин каждый процесс выполняет упаковку данных посредством $MPI_Pack()$. Затем каждый процесс вызывает процедуру $MPI_Allgatherv()$ пересылки этой секции всем остальным процессам коммуникатора и получения всех вычисленных на других процессорах секций массива. Завершающим этапом каждой итерации перебора групп вершин с одинаковым Z является распаковка полученных данных посредством $MPI_Unpack()$ и заполнение вычисленными значениями всего массива значений функции $H(\lambda, Z, \tau)$ в памяти каждого процесса.

Вычислительные эксперименты

Основная цель проведенных численных экспериментов — анализ зависимости среднего процессорного времени от характеристик задачи **A**. Ниже приводятся некоторые результаты этих экспериментов на кластере «СКИФ-Триада» для задач с 10 и 20 с-операциями и с 20 и 40 э-операциями, при $t_j \in [1,5], j \in J$. Шаг сетки значений длительности при n=20 равен 0,01 и $T_0=60$; при n=10 шаг 0,002 и $T_0=30$. Функции $f_j(t_j)$ — степенные функции либо экспоненциальные, а функции $\psi_i(T)=E_iT_i$, где $E_i>0$, $i\in I$.

На рис. 1, a представлены полученные графики зависимости среднего процессорного времени при решении задач на одном процессоре от средней степени пересечения

составных операций, а на рис. 1, δ — зависимости процессорного времени от числа процессоров (в пределах от 1 до 9) при средней степени пересечения с-операций 30 %.

Эксперименты выявили экспоненциальную зависимость времени вычислений от степени пересечения составных операций комплекса, а также квадратичную его зависимость от мощности сеток длительностей. С учетом этого для повышения эффективности поиска решения целесообразно применять метод «блуждающей трубки» с варьированием частоты сеток и диапазонов поиска.

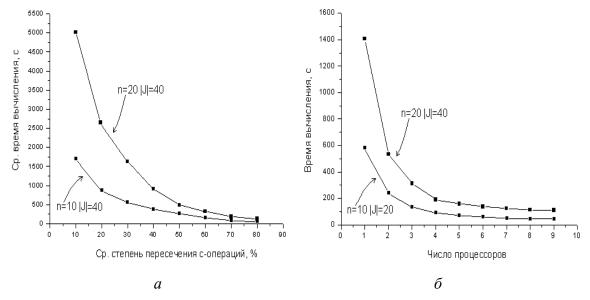


Рис. 1. Зависимость процессорного времени от средней степени пересечения с-операций (a) и числа процессоров (δ)

Данная работа была выполнена при поддержке совместного проекта Ф12ФП-001 БРФФИ и PICS CNRS 6064 (Франция).

Библиографические ссылки

- 1. *Boysen N.*, *Fliedner M.*, *Scholl A.* A classification of assembly line balancing problems // European Journal of Operational Research. 2007. V. 183. P. 674–693.
- 2. *Bukchin J., Tzur M.* Design of flexible assembly line to minimize equipment cost // IIE Transactions. 2000. V. 32. P. 585–598.
- 3. *Burkov V. N., Novikov D. A.* Models and methods of multiprojects' management // Systems Science. 1999. V. 256. № 2. P. 5–14.
- 4. *Левин Г. М., Розин Б. М.* Оптимизация длительностей последовательно-параллельного выполнения пересекающихся множеств операций // Информатика. 2012. № 4. С. 87–92.
- 5. Суперкомпьютерные конфигурации СКИФ / С. В. Абламейко [и др.]. Минск : ОИПИ НАН Беларуси, 2005.
- 6. Средства параллельного программирования в ОС Linux / Р. Х. Садыхов [и др.]. Минск : БГУИР, 2004.