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Birefringence (rotation of polarization plane and spin dichroism) of deuterons in
carbon target

V.Baryshevsky*, A. Roubaf
Research Institute for Nuclear Problems, Bobruiskaya Str.11, 220050 Minsk, Belarus

Birefringence phenomenon for deuteron with energy up 20 MeV in carbon target is considered.
The estimation for spin dichroism and for angle of rotation of polarization plane of deuterons is
presented. It is shown that magnitude of the phenomenon strongly depends on behavior of the
deuteron wave functions on small distance between nucleon in deuteron.

PACS numbers: 27.10.+h

I. INTRODUCTION

It was shown in [1], [2] that birefringence effect arise for deuterons (in general for all particles with spin S > 1)
passing through unpolarized isotropic matter. According to @], @] this phenomenon is caused by difference of
spindependent forward scattering amplitude for deuterons with spin projection m = 0 and m = £1 on coordinate
axis parallel to deuteron wave vector (m is magnetic quantum number). As the result there is appears possibility to
study real and imaginary part of spindependent forward scattering amplitude at experiment. The first experimental
study of deuteron spin dichroism in carbon target was carried out at the electrostatic HVEC tandem Van-de-Graaff
accelerator with deuterons of up to 20 MeV ( Institut fiir Kernphysik of Universitit zu Koln) [3], [4]. According to
experimental results appearance of tensor polarization in the transmitted deuterons beam was observed E], @] As
a result spin dichroism of deuteron beam passing through unpolarized carbon target was discovered. Later in 2007
spin dichroism was measured for 5.5 GeV /c deuterons in carbon target on Nuclotron in Dubna [3].

In this paper the difference of spindependet forward scattering amplitude for deuteron with energy up to 20 MeV on
carbon target on the base of eikonal approximation is considered. The estimation for angle of rotation of polarization
plane and for deuteron spin dichroism is done. It is shown that magnitude of the phenomenon strongly depends on
behavior of the deuteron wave functions for small distance between nucleon in deuteron.

II. EIKONAL APPROXIMATION FOR DEUTERON SPINDEPENDET FORWARD SCATTERING
AMPLITUDE ON CARBON TARGET

Let us discuss a possible magnitude of the deuteron birefringence effect. According to ﬂ], ﬂﬂ] birefringence effect
depends on amplitudes of zero-angle elastic coherent scattering of a deuteron by a nucleus f(m = £1) and f(m = 0).
Let us consider theory of birefringence effect [1], [2] briefly.

The Hamiltonian H can be written as

H = Hp(rp, ) + Hp(7) + HN({&:}) + Vo (7p, 70, {€i}) (1)

where Hp is the deuteron Hamiltonian; Hy the nuclear Hamiltonian; Vpy stands for the energy of deuteron-nucleus
nuclear and Coulomb interaction; 7, (r;,) is the coordinate of the proton (neutron) entering into the deuteron {;} is

a set of coordinates of the nucleons. Introducing the deuteron center-of-mass coordinate R and the relative distance
between the proton and neutron in the deuteron 7 = 7, — 17, we write (1) as

h2
2mD

H=—

A(R) + Hp (") + Hx({&)) + VAy (B, 7{&}) + VEy (B, 7, {&}) (2)

Let us consider scattering of deuterons with energy above deuterons binding energy €4. For deuterons with energy 10
MeV time of nuclear deuteron-carbon interaction is 7V ~ 5-10722 5. whereas the characteristic period of oscillation
of nucleus in the deuteron is 7 ~ 27h/eq ~ 2 - 10721 5. As a result we can apply the impulse approximation. In this
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approximation we can neglect of binding energy of nucleons in deuteron i. e. neglect of Hp(7) in ([2)). As a result,

ZD A(R) + Hy({&)) + VO (B, 7 {&}) + VEN (R, 7, {&)) 3)

H=-—
2

As is seen, in the impulse approximation the problem of determining the scattering amplitude reduces to the problem
of scattering by a nucleus of a structureless particle of the deuteron mass. In this case the coordinate r is a parameter.
Therefore, the relations obtained for the cross section and the forward scattering amplitude should be averaged over
the parameter mentioned. For fast deuterons the scattering amplitude can be found in the eikonal approximation ﬂa]
, ﬂ] The amplitude of coherent zero-angle scattering can be written in this approximation as follows

7(0) = g [ (%00 —1) bl () 0

27 1

where k is the deuteron wavenumber, b is the impact parameter, ¢ (7) is deuterons wave function. The phase shift
due to the deuteron scattering by a carbon is

1 [t - 1 [F - 1 [T -
XD = XpN + XnN +X§N = _h_/ VpN (b, z',r']_) dz' — —/ Van (b,z’,r']_) dz' — —/ Vp% (b, z',FJ_) dz'
vV J_oo h J_o h J_o

(5)
where 7| is the 7 component perpendicular to the momentum of 1nc1dent deuteron, v is the deuteron speed.
For the polarized deuteron under consideration the probability |¢ (F')| is dlfferentlate for different spin states of

deuteron. Thus for states with magnetic quantum number m = 1, the probability is |¢11 (F')| , whereas for m = 0,
it is 0o (7)|*. Owing to the additivity of phase shifts, equation (@) can be rewritten as

F0) = E/ ton (542 ) 4 tan (022 ) 46 (5422 ) + 2itpn (5+ 2 ) Sy (B+ 2 ) b o (@) d?bdPr
7 2 9 ) T 2 2 ) 2
+ %/{mm <E— %) Sy <E+ i) + 2it,y <5+ %) tun <E— %)}|go(7?')|2d2bd3r

2
- E/4tN B+ T ) tw (5= T2 ) e0y (B4 7= o (7)]? d2bd?r (6)
T P 2 2 ) PN 2 ’
where
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From (@) it follows

. 2ik - L i R .
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where

(©) _k mp ,(0) _k
Funom (0 = %/ an) € = Tty a0 Fpn(0) = ;/ tpn ton (§)d*¢

and fr(frz) (0) is the nuclear and the Coulomb amplitude of the proton (neutron)-carbon zero-angle elastic coherent

scattering. The expression ()] can be rewritten as

FO) = Epw(0)+ Fux(0) + EG ) + 25 + 25 [t (0 85y (€) [ (6 7.2)| e ®

+ % tpn (5) tnn (1) ‘90 (5— i, 2)‘ d*¢d*ndz — / ( ) )5y (€ (ﬁ) ‘so (5— , z) ‘2 d2ed®ndz.



Then from (@)
Ref(0) = ReFyy(0) + ReFun (0) + ReFSy (0) — 2ImFC.x — Im / G )2d2§d2ndz
_ %m/tw (5) ton (ﬁ)‘ap({—ﬁ,z)‘ d>ed*ndz ——Re/ () (i) £y 5) ‘w( ‘ Lednds,
Imf(0) = ImFyn(0) + ImFpn (0) + ImES (0) + 2ReFS pN+—kRe / ton (7)) £5 (5 (5 7, z) 2d2£d2ndz (9)
+ 2R [t (&) tun D |o (§-72) [ deatnaz = L [t (&) tun Dt (&) [ (6 72) | e

In accordance with [1]-[4] rotation of polarization plane is determined by the difference of the amplitudes
Ref(m = £1) and Ref(m = 0) and spin dichroism is determined by the difference of the amplitudes Imf(m = %1)
and I'mf(m = 0). From (I0) it follows that
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where d; is the difference of spindependent forward scattering amplitudes.

At scattering of deuterons on light nucleus the characteristic radius of the deuteron is large comparing with the
radius of nucleus. For this reason for estimation of effects, when integrating, we can suppose that the functions ¢,y
and t,n act on ¢ as §-function. Then

retdr) = =20m { Fun(©) [ 66 (€) [Joss (€2)[ = o (€5)[ | e}
- Tt { En O Fu ) [ [loss 0.9 = 60 (0.2
- TR EGnOFn O [ [los1 09 ~ g0 0.2 =}
(@) = 2e {Fux(0) [ 155 (€) [Joss (€2)] = oo (2) ] as}

N Q%Re{FpN(anN( ) [ [los1 0.2 = Ieo 0.2)] a: }
iy, {F,g,Nw)FnN(m [ [ 0.9 - k029 dz}. (11)

- 2
o (.g _7 z)‘ i.e. by the
difference of distributions of nucleon density in the deuteron for different deuteron spin orientations. The structure

of the wavefunction ¢, is well known:
1 [ u(r) 1 W(r) 4 }
m = + — S m 12

o Vi { VR R (12

where u(r) is the deuteron radial wave function correspondlng to the S-wave; W (r) is the radial function corresponding

- 2
The magnitude of the birefringence effect is determined by difference ‘cpil (.f — 1], z) ‘ —

to the D-wave; the operator Sip = G(Snr) - 252, My = S = 1(G1 + G2) and &(») ate the Pauli spin matrices
describing proton(neutron) spin.



Using (I2) we obtain

2 2 3 1 u(r)W(r) 1 W(T)2 2 2 2
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where r? = ¢2 + 22,
Substituting equation ([I3)) into (1)) yields

Re(dy) %Im {FHN(O)/th (5) {i“(r)zv(r) - %W(;"V } & ;2222d2§dz}

r=2a (13)
™

V2 r r
~ 2 {Fy O)Fun(0)}G — T Re {FGn (0 Fa (0} G,
Im(dy) = —%Re {FnN(O)/th (g) {%u(r):;[/(r) _ %Wg) }5 ;22 2edz }
+ §Re{FpN( 0)F,n (0 )}G——Im{ N (0)Fan(0)} G (14)

Now we can evaluate the deuteron spin dichroism and angle of rotation of polarization plane. Let unpolarized
deuterons beam pass through carbon target. According to ﬁ]—[@] spin dichroism A and tensor polarization can be

written as
4 2
P2z = _gAa Pza = Pyy & gAa (15)
where
Iop— 11  Ngz 27N,z
T+ 1y 201, o~ o0) = g imldy) (16)

Iy is the intensity of the deuteron beam after the target if the deuteron beam before the target is in the spin state

m = 0 and, similarly, I is the intensity of the deuteron beam after the target if the deuteron beam before the target

is in the spin state tn = %1, z is thickness of target in g/cm?, N, is Avogadro number, M, is molar mass for targets

matter, o011 and o4 are the deuteron total cross-section of scattering for spin state m = £1 and m = 0 respectively.
According to [1]-[4] angle of rotation of polarization plane is

271NazR

¥ = k/'Mr e(dl).

(17)

For estimation of nucleon-carbon strong interaction in (B lets consider optical Woods-Saxon potential for 5.25
MeV nucleons V,n(r) = Vpn(r) = %. Total cross-section for n-C scattering at 5.25 MeV calculated
by optical potential and eikonal approximation is about 1.2 barn that agree with experimental data. For Coulomb
p-C interaction in (Bl we consider Coulomb screening potential. For calculation of parameter G the deuterons wave
functions from B was applied. Obtained value G is about 0.05.

In () the first items for Re(d;) and I'm(d;) are describe contribution of interference of nuclear n-C and Coulomb
p-C interactions (lets denote that as NC), the second items are describe contribution of interference of nuclear p-C and
n-C interactions (NN) and the third items are describe contribution of interference of nuclear p-C, n-C and Coulomb
p-C interactions (NNC). Dependencies on energy of contributions of every items to o3 — o¢ and Re(d;) are shown
on fig[ll

So according (IB) for carbon target with z = 0.1g/¢m? and for energy conditions of experiment (6-13 MeV) [3],
[4] dichroism is about 0.01. On the fig2l is shown dependence of averaged effective difference of total cross-section
o+1 — 0p on averaged deuteron energy inside carbon targets obtained in experiments E], @] We would like to make
a note that since o¢ # o041, measuring of spin dichroism possible in spin-filtering experiment in COSY (investigation
of different decreasing of intensity of transmitted proton beam after passing of deuteron target with longitudinal and
transversal polarization relatively proton wave vector).

2



10 T T T T
...... sssEsssm NC 60 EEEEEEm NC
.. o. - = = NN .o’o - NN
. % eeoee NNC 40r . eseee NNC

Total

5 10 15 20 5 10 15 20
Energy (MeV) Energy (MeV)

a) b)
Fig. 1: Dependencies on deuteron energy of contributions of items NC, NN, NNC and their sum to a) o+1 — o9 and b) Re(d;).
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Fig. 2: Dependence of averaged effective difference of total cross-section 041 — oo on averaged deuteron energy inside carbon
targets obtained in experiments [3], [4].

For same carbon target but for a little higher energy angle of rotation of polarization plane is about -0.5°. So that
value of rotation can be measured experimentally on the installation described in [3], [4].

There are some reasons that can essentially increase birefringence effect. First of all, it is interaction of nucleon
with carbon. On the figl8lis shown the estimated total cross-section, calculated by simple Woods-Saxon potential and
eikonal approximation in comparison with experimental total cross-section. Interaction of nucleon with carbon has a
lot of resonances in energy region of carried out experiment. So experimental cross-section for some energy interval in
2-2.5 times more than estimated that can result in increasing of effects up to 4-6.25 times for that energy interval. At
the second, parameter G is very sensitive to deuterons wave functions at small distances. At the third, the increasing
of weight of D-state (in [8] it is 4.85%) is increase birefringence effects.

According to fig[l] Coulomb scattering play very important role in birefringence value and behavior. Position of
peak, caused by Coulomb interaction is sensitive to Coulomb potential so it can be shifted for realistic interaction.
FigMland figBlgive qualitative explanation of experimental results on figl2[3], [4]: sign of dichroism, strong dependence
on energy, non-monotone and non-linear dependence of dichroism on target thickness.

Let’s consider now another model of d-C interaction. At deuterons energy 10.5 MeV the characteristic time of
Coulomb deuteron-carbon interaction caused by radius of Coulomb screening is 7¢ ~ 2-107¥s. i. e. much more
then characteristic period of nucleons oscillation in deuteron 7 (R ~ 3-10~%c¢m > RN ~ 3-107'* em where R®
and RY are radiuses of Coulomb screening and nucleus of carbon respectively). So in this case we can’t to neglect by
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Fig. 3: Dependencies on nucleon energy of total nucleon-carbon cross-section calculated by a) eikonal approximation and b)
from experimental data.

deuterons binding energy. Due to high frequency of oscillation of nucleons in carbon and in deuteron for deuteron-
carbon Coulomb interaction we can use approximation for that in ([2) Coulomb interaction is averaged by deuterons
ground state wave functions. I this case Coulomb potential of p-C interaction will be shifted from the proton to the
deuteron center of mass. Then (@) can be written as

k > T 2 T : . o TL :
f(0) = - / {tpN <b+ 7) +tan <b - 7) +t1€N (b) + 2it,n <b—|— 7) th (b)} |<p(F')|2 d*bd®r

k . F I . 7 ,
+ - / {2itnN <b— %) tS (b) + 2it,n <b+ %) ton <b - %) } o (7| d2bd®r
k > 7 - 7 .
L (b+ ;) o (b - ;) (5 () ¢ (7 d2bar. (18)
From (I8) it follows

L .7 L
10 = Fv(©) + Fun0) + E ) + 2 [ Lt (54 5 ) a6 004ty (5= ) 6y 0} lo (.20 e
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The expression ([I9) can be rewritten as

F0) = Fpn(0) + Fan (0) + E(0) + 2 {tpN (&) e (5 : ﬁ) e ()t (5 *ﬁ) } ¢ (€-7.2)[ d*eana

+ % tpn (5) tan (77) ‘80 (5— 7, z) ‘2 d*¢d’ndz — % /tpN (5") tan (1) tSy (54— 77) ‘80 (5“_ 7, z) ‘2 Led>ndz. (20)



Then from (20)

Ref(0) = ReFpn(0) + ReFyn(0) + ReFiy(0)

- _“”/{PN )t (g%ﬁ)ww(ﬁ)tﬁ]v (“”)}\w( —i.2)| et

_ Zﬂ_kfm/tpzv (E) tan (7) ‘Lp (5— 7, z) ‘2 Pedindz — %Re/tpzv (E) tan () tSy (542“ ﬁ) ‘Lp (5— 7, z) ‘2 dedndz,

Imf(0) = ImFpn(0) + ImFon(0) + ImFy(0)
+ ZRe | {tpw (&) ti (5%) + oy () 15 (“T”) } ¢ (€-7.2)| d*¢atnas (21)
+ %Re/tpw (E) tun (i7) ‘(p (E— 7, z) ‘2d2§d2ndz _ %Im/tpzv (g") ton () ton (5; ﬁ) ‘cp (E— , z) ‘2 d*ed*ndz.

From (22)) for spin-dependent part of forward scattering amplitude follows that

Re(d) = -2t | { o (€) (5 L ’7) o+t () 8 (“T”)} [\wil (€-7.2)] ~eo (€~ ﬁ,z)ﬂ dedndz
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Taking into account (I3) and the same assumption as in (1) we are obtain

Re(d,) %Im{FnN(o)/th (g) {%u(r);‘/(r) 3 %Wrg) }52;22' &edz }

~ I B O 0}6 - 256 Re [ty (§) 1, <>tpN(5§’7>d2sd2ndz

Im(d)) = —%Re {FHN(O)/th (g) {\/%u(r)TZV(r) iW;) }6 ;22 dedz }
- Re{FpN( )Fun(0)} G — %G Im/ ” (i) Sy (%”) d*€d?pdz. (23)

In 23)) the first items for Re(d;) and Im(d;) are describe sum of contributions of interference of nuclear n-C
interaction with averaged Coulomb p-C interaction and nuclear p-C interaction with averaged Coulomb p-C interaction
(lets denote that as 2NC), the second items are describe contribution of interference of nuclear p-C and n-C interactions
(NN) and the third items are describe contribution of interference of nuclear p-C, n-C and averaged Coulomb p-C
interactions (NNC). Dependencies on energy of contributions of every items to 041 — ¢ and Re(d;) are shown on
fighl

So, according to fig[Iland figHlthe second model for estimation of deuteron-carbon spin-dependent forward scattering
amplitude gives quantitatively almost the same result as the first model but the peaks caused by Coulomb interaction
is shifted almost on 1 MeV.
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Fig. 4: Dependencies on deuteron energy of contributions of items 2NC, NN, NNC and their sum to a) o+1 — oo and b) Re(d;).

III. SUMMERY

Obtained results show that estimation of spin dichroism is coincide with experimental results for some targets.
More over it necessary to note that birefringence (through the parameter G) is very sensitive to deuterons wave
functions especially at small distances. Here was used deuterons wave functions from [&], based on CD-Bonn potential
of nucleon-nucleon interaction. According to [8] these functions have discrepancies with wave functions based on
the another models for r < 2 fm. Especially a big problem arise with description of deuterons wave functions for
r < 0.5 fm. So birefringence can be used as additional source of information about deuterons wave functions at small
distances.
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