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Neutron channelling in a magnetic tube trap

V.G. Baryshevsky

Research Institute for Nuclear Problems, 11 Bobryiskaya str., 220050, Minsk, Be-

larus

Quantum effects at motion of ultracold neutrons in a magnetic
trap are actively studied now. In particular, "magnetic tube”
traps [1] are used for investigation of such effects. According to
[1], the periodic set of magnetic traps can be developed. Traps
in the form of "magnetic tube” are used for focusing of atomic
beams and described in details in |2] on the basis of the classic
motion equations for a particle, possessing the magnetic moment,
in a magnetic field. But quantum effects, which appear at neu-
tron motion in the magnetic trap, can not be described by classic
motion equations. The typical radius of the magnetic trap, which
is being designed, is p ~ 107* cm [I]. Thus, due to large wave-
length (A ~ 107 = 107% ¢cm), motion of the ultracold neutron in
the magnetic trap in the direction, transversal to the axis of the

magnetic tube, appears quantized.
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Quantum effects were studied for neutron motion in a gravita-

tional trap [3]. Neutron motion in such a trap is one-dimensional.

But in contrast to [3], transversal motion of neutrons in the " mag-
netic tube” trap with respect to it axes is two-dimensional. As
noted below, neutron motion in such a trap is determined by spin-
independent effective potential energy, which is proportional to

the magnetic field strength square.

Thus, let us consider motion of the ultracold neutrons in the tube-
shaped magnetic trap. The Schrodinger equation, which describes

the ultracold neutron in such a trap, is as follows:
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where M is the neutron mass, u is the neutron magnetic moment,
7 is the coordinate of the neutron, B is the magnetic induction

in the point 7, & = (04, 0y, 0,) are the Pauli matrices.

Suppose the axes z to be directed along the tube axes. Neutron
motion along the tube axes is quasi-classic. Tube length (dimen-
sion in direction z) significantly exceeds its radius. Therefore,
B (7) inside the tube can be considered as independent on z, i.e

B(7) = B(z,y) = B(p, ), where p and ¢ are the radius and



azimuth angle in the cylindrical coordinate frame.

The equation () in the cylindrical coordinate frame looks like as

follows:
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Particle motion along z is free and is described by the quantum
number k,. Therefore, the wave function of a neutron in the tube

can be expressed as:
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Therefore, to find the spectrum of neutron states in the tube the

following equation should be solved:
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Let us find the spectrum of neutron states in the trap in the first
order of perturbation theory. In this case the diagonal matrix
element of the interaction energy, i.e. the average value of the
magnetic field strength B in the trap, determines the correction,
which defines spectrum. But the averaged value of B in such a

trap is zero. Therefore, the nonzero contribution to the spectrum



of the neutron energy levels in the tube trap appears in the second

order of the perturbation theory.

For further analysis it is convenient to transform differential equa-

tion (2) to the homogeneous integral equation:
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where Go(7,7) = —%% is the Green function of the equa-
tion (2) and the potential energy V = —u@B (7). Substitution of

the expression for V(7) (&) to the right part of equation () gives:
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This equation is equivalent to the following expression
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Motion of the neutron along z is quasiclassic, therefore the qua-

siclassic expression for the Green function can be used:
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where 6(2' — z) is the Heaviside unit function (6(2'—z) = 1, when

2> zand 0(2' — z) = 0, when 2’ < z2).



With the help of (8) the expression () converts to
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It should be mentioned that V(7)V (7) = 12(3B)(3B) = u2B2(7).

With the help (3]) the equation (@) can be expressed as
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where
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is the effective potential energy.

According to (II) neutron motion in the magnetic tube trap,
which is formed by the alternating magnetic field, is determined
by the squared magnetic field strength and does not depend on

the neutron spin direction.

The equation (I0) allows to find the eigenfunctions and the spec-

trum of eigenvalues of neutron energy in the trap.

In the cylindrical coordinate frame the equation (I0) reads as



follows:
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Let us keep in the sum in (I2)) only the term with m’' = m, which
describes the effective potential energy V.rs(p, ¢) averaged over
the azimuth angle ¢. (More detailed analysis of neutrons in the
trap could require consideration of additional terms in the sum

with m’ # m.) Then (I2)) looks like as follows:
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According to [?] magnetic field in the tube trap linearly decreases
to the trap center, i.e. B(§) ~ p. Therefore, B%(§) ~ p* and
(m|V.;¢(7)|m) ~ p?. Therefore, equation (I3) can be rewritten
as:
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where A is determined by

At = S Vg () = 2 0 (15)

The eigenvalues and eigenfunctions of the obtained equation (14



are the those of the cylindrically symmetric oscillator [4]. Intro-

ducing new variable & = v/Ap? one can get from (I4) the following

equation:
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where 3 = ﬁz

Solution of this equation is as follows [?]:
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where W (¢) is the confluent hypergeometric function

im| + 1
2

W) :F{—w— ),|m\+1,s}. (18)

To make the wavefunction ®,,, finite everywhere, the parameter

1 : ' '
B — —|m|2+ should be integer nonnegative number, i.e.
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= n,, where n, > 0. (19)
This condition (19) determined spectrum of the transversal mo-
tion for the neutron in the magnetic trap.

To avoid misunderstanding, I’d like to emphasize that I consider

spectrum of the energy levels, which are lower then the height of



the effective potential barrier.

Substitution § = ﬁ in the explicit form to (19) provides to get:
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therefore
h%s?(n,m) 2 im| + 1
Eirans(ny,m) = 2]\; = 2M4\/Z(np +— ) (21)

Let us consider the particular example. The averaged field can

be expressed as
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where ppq, 1s the radius of the magnetic tube, B ..

is the square
averaged magnetic field at p = p;q.. In this case the coefficient
Ais
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The frequency of the transverse oscillations of the neutron in the

ground state in the magnetic tube
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For the ultracold neutrons with A &~ 107% = 10~® cm in the tube



with ppmee ~ 107% cm the product mpmax ~ kpmae >
1. Therefore, for the magnetic field \/m = 10* gauss the
frequency Qyrans ~ 10* = 10° s~1. Suppose that during the time
7 the neutron moves with the speed 10> ¢cm/s in the tube of 1
cm length (time of neutron flight in the trap is about 7 ~ 1072
s), then the parameter Q..,s7 > 1, i.e. neutron executes many

oscillations in the trap.

Thus, neutron motion in the magnetic tube is described by the

energy of the transversal motion Ej..,s and the energy of longi-

tudinal motion Ejyy, = % The sum of these energies is equal
to the neutron energy before it flies into the trap £ = 7;21@2 :
E = Etrans + Elong- (25)

The equation (25]) can be used to find kj for the neutron in the

certain state of transversal motion.

When the energy of transversal motion is comparable or exceeds
the height of the effective potential barrier, the above expressions

for the wavefunctions and Ey,..,s cannot be applied.

The typical angle of neutron incidence on the magnetic tube trap

providing the energy of transversal motion to be less than the



height of the effective potential barrier can be expressed as:
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where €27, is the frequency of Larmor precession of neutron spin in
the field \/(B2,,,). The expression (26) was obtained considering

k =~ k, (because k, converges to k with energy growth).

According to (26]) the neutron moving with the speed 1 m/s in
the trap with the maximal field B ~ 10* gauss can be captured
to the trap with the potential V., at the angle ¥ < ¥, ~ 1 rad.

When neutron speed is v = 10 m/s, the angle 9., ~ 1072 rad.

1
2

Energy growth results in reducing of 9., ~ % ~ 7z

Neutron passing through the magnetic tube trap is similar to the
process of axial channelling of a charged particle in a crystal.
Study of the angular distribution for neutrons passing through
the trap provides to find spectrum of the neutron levels in the

trap.

Actually, experiments for neutrons(atoms) passing through the
magnetic tube trap can be considered as experiments studying
neutron (atom) channelling in such a trap. When the traps are

periodically distributed in the plane (z,y) the analogy becomes

10



ever more evident.

It should be also mentioned that bent magnetic tube traps can
be used for focusing wide beams of ultra cold neutrons (similar

focusing of particles channelled in a crystal).
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