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Webster encyclopedic dictionary defines forecasting as  ―an activity aimed  at compu-

ting or predicting some future events or conditions based on rational analysis of relevant 

data‖. Forecasting is widely used in applications, including decision-making and planning 

at top executive level.  

Rigorous mathematical studies of stochastic forecasting were started in the 1930s by 

the founder of modern probability theory Andrey Kolmogorov. Two stages can be identi-

fied in the development of statistical forecasting techniques. The first stage took place be-

fore 1974 and was characterized by construction of forecasting statistics (algorithms or pro-

cedures) that minimized the forecast risk (the mean square error) for a number of simple 

time series models (such as stationary models with fixed spectral  densities,  stationary 

models with trends belonging to a given function family, autoregressive models, moving 

average models, etc.). 

In the 1970s it was found that applying many of the developed ―optimal‖ forecasting 

procedures to real-world data often resulted in much higher risks compared to the expected 

theoretical values. The reason for this phenomenon was pointed out by Peter Huber (Swiss 

Federal Institute of Technology) in his talk at the 1974 International Congress of Mathema-

ticians (Vancouver, Canada): Statistical inferences are based only in part upon the observa-

tions. An equally important base is formed by prior assumptions about the underlying situa-

tion [1]. These assumptions form the hypothetical model 
0M of the process being investi-

gated. In applications the behavior of the investigated processes often deviates from the 

model assumptions 
0M , resulting in instability of forecasting statistics. The main types of 

deviations from the hypothetical model 
0M  are the following: non-normal observation er-

rors, dependence (or correlation) of observation errors, nonhomogeneous  observation er-

rors, model specification errors, presence of outliers, change points, or missing values in 

the time series [1–3]. It was suggested [1] that statisticians develop robust statistical proce-

dures, which would have been affected only slightly by small deviations from the hypothet-

ical model 
0M . This marked the beginning of the second stage in the history of statistical 

forecasting. 

In the recent years, the development of robust statistical algorithms has become one of 

the major research topics in mathematical statistics. New results in this field are presented 

each year at the International Conference on Robust Statistics (ICORS). 



 

 

The mathematical substance of the time series forecasting problem is quite simple: to 

estimate the future value 
d

Tx R  of the d  – variate time series in   steps ahead based on 

T  observations  1, , Td

T TX x x R   and some hypothetical stochastic model 
0M  of the 

time series  tx . In practice, the underlying hypothetical model 
0M  is often distorted, and 

this fact leads to instability of the ―optimal‖ forecasting statistics that are optimal under 

0M  only [1, 2]. The lecture is devoted to sensitivity analysis of the  risk  for traditional  

forecasting statistics (based on 
0M ) and also to construction and analysis of new robust 

forecasting statistics (based on distorted model M   for some classes of distortions). 

Let  ˆ : Td d

T Tx f X R R   , be any forecasting statistic, 

   2
ˆ 0T Tr r f E x x         

be the mean square forecast risk, E   be the expectation symbol w.r.t. the probability dis-

tribution of the time series,  0,   be the distortion level, e. g., the portion of outliers, 

(if 0   we have the hypothetical model 
0M ). We use robustness characteristics [3–5] 

based on the risk functional: the guaranteed (upper) risk 

   supr r f r f    , 

where the supremum is taken over all admissible distortions 

 : 0M     ; 

the hypothetical risk 

   0 0 0 0inf 0
f

r r f r f   ; 

the risk instability coefficient 

    0 0 0f r f r r       

equal to the relative increment of the guaranteed risk w.r.t. the hypothetical risk;  -

admissible distortion level 

    sup 0 : f             

indicating the maximal distortion level such that the risk instability coefficient doesn’t ex-

ceed a given positive constant  ; the risk-robust forecasting statistic  

 ˆ
T Tx f X

  , 

where  f   minimizes the guaranteed risk: 

   inf
f

f f   . 

In this lecture we present our results [4–8] related to the following topical problems: 

• construction of mathematical models and descriptions of typical distortions; 

• evaluation of the risk-robustness for traditional forecasting procedures; 

• evaluation of critical distortion levels; 



 

 

• construction of new robust forecasting procedures. 

The theoretical results are illustrated on simulated and real statistical data. 
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