

ABOUT CRYPTOGRAPHIC EXTENSION
OF RUSSIAN PROGRAMMING LANGUAGE

AND ITS SOFT AND HARD IMPLEMENTATIONS

G. P. Agibalov, V. B. Lipsky, I. A. Pankratova

Tomsk state university
Tomsk, Russia

E-mail: agibalov@isc.tsu.ru, lipsky@.mail.tsu.ru, pank@isc.tsu.ru

A cryptographic extension of the Russian programming language LYaPAS

called LYaPAS-T is presented. The extension concerns the size of operands and the

set of elementary operations over them. It is motivated by the need of trustworthy and

effective soft and hard implementations of contemporary cryptographic algorithms

and secure computer systems of logical control. A LYaPAS-T compiler generating a

load module for operating system Linux, and the project of a processor implementing

LYaPAS-T in hardware are presented too.

Keywords: Russian programming language, cryptographic extension, LYaPAS-

T, compiler, implementation in hardware.

Introduction

Here by the Russian programming language is meant the algorithmic language LYa-

PAS elaborated at the beginning of the 1960th years at Tomsk State University (Russia) by

the leadership of A.D. Zakrevskij and designed for the representation of logical combina-

torial algorithms solving the problems of applied discrete mathematics appearing in the

synthesis of discrete automata [1, 2]. The name of Russian programming language was giv-

en to it by American scientists [3]. Up to 1990th years, LYaPAS was applied in USSR [2],

USA [4], Germany, Poland, Czechoslovakia and other countries. This time, LYaPAS is

successfully reanimated at Tomsk State University by the Information Security and Cryp-

tography Department especially for elaborating the trustworthy system and applied soft-

ware destined for the computer-aided design of secure logical control computer systems

and for the secure and effective implementation of cryptographic algorithms [5]. Among

many programming languages known today, LYaPAS seems to be the most appropriate one

for these purposes.

At the same time, there is an essential and perhaps single drawback of LYaPAS – the

lack of many elementary operations that are widely used in contemporary cryptographic

algorithms: for the long integer arithmetic, for calculating in many-dimensional spaces over

finite fields and rings, for solving combinatorial problems on large sets, etc. By the way,

this drawback is usual for all other programming languages including ones being much

younger than LYaPAS. In some of them, the drawback is got over by writing classes of

long integers, large discrete functions and others. As for LYaPAS, this its lack is more ef-

fectively got over by extending the language itself, i.e., by spreading elementary operations

in LYaPAS for logical complexes and by adding some new operations to it defined for va-

riables and logical complexes. The last version of LYaPAS (known as LYaPAS-M [6, 7])

slightly revised and then exTended in such a way is called LYaPAS-T.

The revision of LYaPAS-M concerns the alphabet of the language and the arithmetic

operations of multiplication and division for integers. The result of the revision is called

vLYaPAS (from reVised LYaPAS). In it, small Latin letters are used instead of capital

Russian ones, symbols of some operations are replaced by other more proper ones, and

multiplication and division operations are defined saving the values of overflow and re-

mainder respectively.

Revised LYaPAS

A program in vLYaPAS is a series of sentences each starting with a pair §s where s is a

non-negative integer called the number of the sentence. Every sentence is a sequence of op-

erations applied to operands.

Operands in vLYaPAS are constants, variables, complexes and complex elements.

They are used for representing non-negative integers, Boolean vectors, Unicode symbols

and sequences of them. Components in a Boolean vector are numbered beginning with 0 in

the direction from the right to the left end. In vLYaPAS, non-negative integers are bounded

by 2
32

 – 1, and the length of Boolean vectors – by 32. Boolean vector of the length 32 is

called a word. It is also considered as a non-negative integer. Boolean vector of any length

n 1 with only one component 1 is called a unit or identical vector.

There are natural, unit and symbol constants in vLYaPAS. Natural constants are written

as decimal, hexadecimal, octal or binary numbers. A unit constant is a unit vector. Symbol

constant is a sequence of Unicode symbols.

Variables in vLYaPAS take values of Boolean vectors of length 32. The number of all

variables equals 27. They are denoted by straight (not italic) letters a, b, ..., z, Z, where Z is

used for keeping overflow and remainder under multiplication and division operations. Be-

sides, there is a virtual variable called the own variable of LYaPAS. Unlike the other va-

riables, it is not written in LYaPAS programs, but it appears in them in implicit way as a

result of any elementary operation and can be used as operand by any next operation in the

program. For convenience of exposition, this variable is accepted to name .

Complex is a linearly ordered set of elements being symbols – in a symbol complex or

Boolean vectors of length 32 – in a logical complex. Every complex has its unique number –

a non-negative integer. The real number and the greatest number of elements in a complex

are the parameters of the complex and are called its cardinality and capacity respectively.

 There are elementary, complex, input-output and macro operations in vLYaPAS. Ele-

mentary operations are of four classes: value transfer (assigning), logical, arithmetic and

transition operations. Among complex operations, there is the operation of forming (creat-

ing) a complex of a given cardinality. A complex which is created with a constant or varia-

ble capacity is called respectively static or dynamic one. Input-output operations allow to

output symbol complexes and constants for console and to input symbol constants from

keyboard to a symbol complex. Macro operations are calls for subprograms with the given

external (input/output) parameters.

The more detail definitions and notations of all operations and operands in vLYaPAS

are given in [8].

LYaPAS extension

Natural constants in LYaPAS-T are the integers 0, 1, ... , 2
n
 – 1 where n is a multiple of

32 and depends on actual implementation of LYaPAS-T. Nowadays the value n = 2
14

 seems

to be quite sufficient for contemporary cryptographic applications. By letting be 2
32

 a nat-

ural constant c may be expressed by the following series:

 с = c0 + c1 + c2
2
 + ... + cr – 1

r – 1
 (1)

for some r > 0 and ci = {0, 1, ... , 2
32

 – 1}, i = 0, 1, ... , r – 1. In their standard binary

representation, the elements of the set are Boolean vectors of length 32. Therefore in

LYaPAS-T, the sequence c0, c1, … , cr – 1 is represented by a logical complex L of length r

with ci being the ith element of L.

All operations defined in vLYaPAS for variables can be used in LYaPAS-T for logical

complexes. In case of arithmetic operation the sequence of complex elements is considered

as a natural constant c expressed by the series in (1). Different operands for an arithmetic

operation may be of different lengths and types (one of them – a variable, another – a com-

plex). In case of logical operation the complex value is considered as a Boolean vector be-

ing the concatenation of the complex elements. Logical complexes of cardinality n/32 with

values being unit vectors are unit constants in LYaPAS-T.

So, unlike LYaPAS, there are two types of operands for elementary operations in LYa-

PAS-T: variables of the length of one word and logical complexes of different lengths –

from 1 to n/32 words. Accordingly, in LYaPAS-T, there are two types of the own variable

– prime and complex. The first one is the traditional in LYaPAS. It has the length of one

word and may take the values of any variable of the language. In any implementation of

LYaPAS-T, soft or hard, it is kept in a processor register. The own variables of the 2nd type

take values of logical complexes and have their lengths. In hard implementation of LYa-

PAS-T, each of them is kept in one and the same register of the maximal possible length –

n. In soft implementation of LYaPAS-T, to exclude time-spending operations for complex

transfer between a register and the data memory, it is expediently, for the time of executing

a series of operations beginning with the address to a logical complex, the role of the com-

plex own variable to pass directly to this complex and to keep it in the data memory at the

address of the complex itself.

In addition to operations in vLYaPAS, the extension LYaPAS-T contains some new

logical operations used in cryptographic algorithms: permutation of components in a Boo-

lean vector, projection – taking a sub-vector in a Boolean vector, insertion of a Boolean

vector into another one and inverse operation, concatenation of Boolean vectors, left and

right cyclic shifts of a Boolean vector, finding the largest and the least elements in a com-

plex and others. The definitions and notations of these operations are given in [8].

LYaPAS-T compiler

It is a program in С++ which converts a program in LYaPAS-T to a load module in an

assembly language for the OS Linux. The compiler is elaborated in the traditional way and

is written using the library of regular expressions making it simple and transparent.

The operation of creating a complex is accompanied with the control of the free section

of a necessary size in the memory. It is done by comparing the values of the complex ca-

pacity, address of the free area, and the memory bound granted by OS for complexes. In the

case of enough place, the address of the complex beginning takes the value of the free sec-

tion address, and then the free section address is increased by the value of the complex ca-

pacity. If the place is not enough, then an appeal to OS is made for increasing the accessible

memory bound.

Under this organization, the memory is protected against attacks through the stack or

heap overflow because, first, buffers (complexes) are taken away from the stack, and there

is no possibility to rewrite the return address, and, second, there are no operations for set-

ting memory free by means of OS.

LYaPAS-T processor

For being executed by LYaPAS-T processor, a LYaPAS-T program should be prelime-

nary represented by a sequence of instructions in the executive code (called LE-code) for

the processor. Each instruction in it has fields containing information about operation code,

operand type (constant or not, complex type – logical, symbol, static or dynamic if the ope-

rand is a complex or its element) and complex and variable addresses in the data memory.

A complex address is the address of the first element of the complex. For the static com-

plex, it is explicitly written into the complex address field. For the dynamic complex, this

field contains not the address of a complex itself but the address where the address of this

complex is kept. The variable address field is used to keep the operand, if it is a constant,

or the address of the operand, if it is a variable or a complex element. In the last case the

variable address field contains the address of this element, if the complex is a static one and

the number of the element in it is a constant, or the number of this element in a complex

given immediately or as a value of a variable, if the complex is a dynamic one.

LE-code of a LYaPAS-T program is generated for the processor by the L-preprocessor –

a special compiler translating the program to LE-code. A functioning algorithm of the L-

preprocessor is described in [9].

LYaPAS-T processor consists of the following units: Memory, Arithmetic Logical Unit

(ALU), Control Device (CD), Instruction Counter (IC), Instruction Register (IR) and two

decoders – Address Decoder (ADec) and Operation Decoder (ODec).

The Memory is divided into two segments – IM (Instruction Memory) and DM (Data

Memory) used to store, respectively, an LE-code of a LYaPAS-T program P and data for it –

unit constants and complexes and variables for every subprogram in the hierarchical struc-

ture of P. Accordingly, for P with k subprograms, DM is conditionaly divided into four sec-

tions: I – for keeping n unit constants; C and G divided into k subsections Cj and Gj – for

keeping respectively static and dynamic complexes in jth subprogram; and W also divided

into k subsections Wj – for keeping local variables a, b, ..., z, Z belonging to jth subpro-

gram, parameters and addresses of all complexes in jth subprogram.

The data allocation in sections I, C, W is made by the L-preprocessor (before the execu-

tion of the program P), in section G – by the processor itself (during the execution of P).

Instructions in IM and data in DM are disposed compactly, with no gaps and in the order of

section enumeration: I, C, W, G. The quantity of occupied elements in the subsection Gj is

kept as a value of an element in Wj. The address of this element is denoted aj. Its value is

the least address of free element in Gj.

ALU contains three registers , Z and O of the maximal possible length n called the

Registers of Common Use (CURs) and destined for keeping, respectively, variables , Z

and operand being read from DM, Operational Devices (OD) used for executing arithmetic

and logical operations in LYaPAS-T over operands and with the operation results

represented in registers , Z and O, and a circuit CEA (Complex Element Address) for

computing the address of a complex element in DM: if v is the address of a complex , then

the address of qth element in is t = v + 4q for logical or t = v + q for symbol .

CD organizes the work of the processor according to the following algorithm.

1. CD selects from IM an instruction at the address pointed in IC and writes it to IR.

2. ODec decodes the contents of the operation code field, ADec decodes the contents of

type and operand (complex and/or variable) address fields in IR.

3. CD takes the information from ODec and Adec and generates the signals either for

selecting from DM (possibly by means of the circuit CEA) an operand (constant, variable,

logical complex or complex element) at the corresponding address and writing it into one of

the CURs, or, if the operand is a constant given explicitly in the instruction, for writing it to

the register O or to IC.

4. If the operation in the instruction is related to the functional type being a logical or

arithmetic one, CD generates a signal initiating the corresponding OD.

5. Initiated OD fulfils the operation pointed in the instruction in IR, and CD writes re-

sults into CURs according to the operation.

6. If the operation code is of the transition type, the value of the variable address field

in the instruction in IR is written to IC; otherwise the state of IC is increased for selecting

the next instruction from IM.

7. If the instruction in IR implies the creation of a dynamic complex with a variable ca-

pacity in a jth subprogram, then the cardinality 0 and capacity of this complex are writ-

ten at the addresses of its parameters in Wj, and the value at address aj is stored in Wj as the

address of this complex in Gj and then it is increased by .

For the subset of vLYaPAS containing no calls for subprograms and operations over

complexes, the student S.Ye. Soldatov has implemented the processor in a programmable

logical integrated circuit designed with the help of the computer-aided design system ISE

WebPACK 9.2i by Xilinx. The maximal operating frequency of the circuit equals 50 MHz.

The circuit occupies the third part of the Nexys2 FPGA debugging board.

Bibliography

1. LYaPAS, a Programming Language for Logic and Coding Algorithms. New York, London: Academic

Press, 1969.

2. Торопов Н. Р. Язык программирования ЛЯПАС // Прикладная дискретная математика. 2009.

№ 2(4). С. 9–25.

3. Nadler N. User Group for Russian Programming Language // IEEE, Newsletter for Computer-Aided

Design. 1971. Issue № 3. May/June.

4. Charles J., Albright Jr. An Interpreter for the Language LyaPAS. University of North Carolina at Chapel

Hill: Department of Computer Science, 1974.

5. Агибалов Г. П. К возрождению русского языка программирования // Прикладная дискретная ма-

тематика. 2012. № 3(17). С. 77–84.

6. Закревский А. Д., Торопов Н. Р. Система программирования ЛЯПАС-М. Минск : Наука и техника,

1978.

7. Торопов, Н. Р. Диалоговая система программирования ЛЕС. Минск: Наука и техника, 1985.

8. Agibalov G. P., Lipsky V. B., Pankratova I. A. Cryptographic extension of Russian programming lan-

guage // Прикладная дискретная математика. Приложение. 2013. № 6. С. 93–98.

9. Agibalov G. P., Lipsky V. B., Pankratova I. A. Project of hardware implementation of Russian program-

ming language // Прикладная дискретная математика. Приложение. 2013. № 6. С. 98–102.

