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Abstract

The paper deals with the problem of the large data reduction. The proposed
approach is based on reduction of the number of objects in the initial large data
set and representation of each new object from the reduced data set as a vector
of intervals. An illustrative example is given and preliminary conclusions are
formulated.

1 Introduction

In applied statistics the large data usually represent a high-dimensional data sets as
well as the data sets with a large number of objects. The large data usually include
data sets with sizes beyond the ability of commonly used software tools to capture,
manage, and process the data within a tolerable elapsed time.

Given the ubiquity of large high-dimensional data sets, and the need not only to
transmit, archive, and reduce them, but also to represent and analyze their content, cor-
responding tools for the computational dissection, analysis and representing of complex
datasets whose size defies simplistic analysis must be developed. These tools should
include a representation which allows exploitation of nonlinearity, supports fast mul-
tiresolution algorithms, incorporates a priori information and constraints, and provides
for flexibility of adaptation to the application.

The large data sets are difficult to work with for several reasons. They are difficult
to visualize, and it is difficult to understand what sort of errors and biases are present
in them. They are computationally expensive to process, and often the cost of learning
is hard to predict – for instance, and algorithm that runs quickly in a dataset that fits
in memory may be exorbitantly expensive when the dataset is too large for memory.

The most common methods of the data reduction are methods to reduce the di-
mensionality of attributes, such as principal component analysis and multidimensional
scaling. However, the problem of reduce the number of objects in the studied data set
is also very actual, and exclusion of repeated objects is the most common approach to
solving the problem. A new approach to the problem solving is presented in the paper
and the approach is based on representation of the initial large data set by the data set
with a smaller number of observations, where each object is described by the vector of
intervals. In other words, a value of some attribute for an object should be considered
as an interval of values. So, a problem of the interval-valued data processing is arises.
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2 Heuristic for Reduction of Large Data

The object data clustering methods can be applied if the objects are represented as
points in some multidimensional space Im1(X). In other words, the data which is
composed of n objects and m1 attributes is denoted as X̂n×m1 =

[
x̂t1
i

]
, i = 1, . . . , n,

t1 = 1, . . . ,m1 and the data are called sometimes the two-way data [4]. Let X =
= {x1, . . . , xn} is the set of objects. So, the two-way data matrix can be represented
as follows:

X̂n×m1 =


x̂1
1 x̂2

1 . . . x̂m1
1

x̂1
2 x̂2

2 . . . x̂m1
2

. . . . . . . . . . . .
x̂1
n x̂2

n . . . x̂m1
n

 . (1)

So, the two-way data matrix can be represented as X̂ = {x̂1, . . . , x̂m1} using n-
dimensional column vectors x̂t1 , t1 = 1, . . . ,m1, composed of the elements of the t1-th
column of X̂.

Let us assume that the value n = card(X) is very large. The matter of the proposed
method can be formulated as follows: the initial large data set must be pre-processed
by some clustering procedure for some value ñ << n and the reduced data set X̃ =
= {x1, . . . , xñ} must be constructed. The reduced data set X̃ = {x1, . . . , xñ} described

by m1 interval attributes
{

˜̂x1, . . . , ˜̂xm1

}
. An interval attribute ˜̂xt1 is a correspondence

defined from X in R such that for each xĩ ∈ X, ˜̂xt1
ĩ

=
[
˜̂xt1(min), ˜̂xt1(max)

]
∈ J, where

J =
{[

˜̂xt1(min), ˜̂xt1(max)
]

: ˜̂xt1(min), ˜̂xt1(max) ∈ R, ˜̂xt1(min) ≤ ˜̂xt1(max)
}

is the set of closed

intervals defined from R [2]. In other words, each object xĩ ∈ X̃ is represented as

a vector of intervals xĩ =
(

˜̂xt1
1 , . . . ,

˜̂xt1
ñ

)
, where ˜̂xt1

ĩ
=
[
˜̂xt1(min), ˜̂xt1(max)

]
∈ J. So, the

reduced data X̃ = {x1, . . . , xñ} are an interval-valued data and the data table
˜̂
Xñ×m1 =

=
[
˜̂xt1
ĩ

]
is made up of ñ rows representing the ñ objects and m1 columns representing

m1 interval attributes.
The value ñ << n must be discovered. For the purpose, a heuristic formula

ñ = b
√
nc = b

√
cardXc, (2)

can be used. In general, the proposed method for the data reduction can be summarized
as a procedure as given below:

1. The initial data set X = {x1, . . . , xn} must be processed some clustering proce-
dure for ñ classes and corresponding hard partition X̃ will be obtained;

2. Calculate values ˜̂xt1(min) and ˜̂xt1(max) of attributes x̂t1 , t1 = 1, . . . ,m1 for each
class xĩ ∈ X̃, ĩ = 1, . . . , ñ;

3. Construct the set of vector of intervals xĩ =
(

˜̂xt1
1 , . . . ,

˜̂xt1
ñ

)
, ĩ = 1, . . . , ñ, where

˜̂xt1
ĩ

=
[
˜̂xt1(min), ˜̂xt1(max)

]
.
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So, the reduced data X̃ = {x1, . . . , xñ} are the interval-valued data and the data
set can be processed using some clustering technique [3], [5].

3 An Illustrative Example

The proposed approach to the data reduction must be explained by simple example
and the Anderson’s iris data [1] can be used for the purpose. The Iris database is
the most known database to be found in the pattern recognition literature. The data
set represents different categories of Iris plants having four attribute values. The four
attribute values represent the sepal length, sepal width, petal length and petal width
measured for 150 irises. It has three classes Setosa, Versicolor and Virginica, with 50
samples per class. According to formula (2) we obtain ñ = b

√
150c = 12. So, the iris

data set was classified using k-means method where the number of classes was equal
12. The reduced data set is presented by Table 1.

Table 1. The reduced Anderson’s iris data set
Numbers Attributes
of objects Sepal length Sepal width Petal length Petal width

1 [7.1, 7.9] [2.6, 3.8] [5.8, 6.9] [1.6, 2.5]
2 [5.6, 6.3] [2.2, 3.2] [4.8, 5.1] [1.5, 2.4]
3 [6.1, 6.7] [2.5, 3.1] [5.2, 5.8] [1.4, 2.2]
4 [4.8, 5.5] [3.3, 3.8] [1.3, 1.9] [0.1, 0.6]
5 [6.1, 7.0] [2.8, 3.4] [4.3, 5.0] [1.2, 1.7]
6 [4.3, 5.0] [2.3, 3.6] [1.0, 1.6] [0.1, 0.3]
7 [6.2, 6.9] [3.0, 3.4] [5.1, 6.0] [2.0, 2.5]
8 [6.0, 6.3] [2.2, 2.8] [4.0, 4.5] [1.0, 1.5]
9 [5.2, 5.8] [2.3, 2.9] [3.5, 4.1] [1.0, 1.4]
10 [4.9, 6.0] [2.5, 3.0] [4.1, 4.5] [1.2, 1.7]
11 [5.2, 5.8] [3.7, 4.4] [1.2, 1.7] [0.1, 0.4]
12 [4.9, 5.1] [2.0, 2.5] [3.0, 3.5] [1.0, 1.1]

So, each cell of this table contains an interval ˜̂xt1
ĩ

=
[
˜̂xt1(min), ˜̂xt1(max)

]
, ĩ ∈ {1, . . . , 12},

t1 = 1, . . . , 4 and the corresponding interval data matrix
˜̂
X12×4 =

[
˜̂xt1
ĩ

]
can be pro-

cessed by some clustering technique.

4 Conclusions

The method for reduction of large data sets is proposed in the paper. The method
based on preliminary clustering of the initial large data set using some fast procedure for
following representation the reduced data set by some interval data matrix for following
processing by precise clustering procedure. An experiment with the Anderson’s iris
data set shows the usefulness and effectiveness of the proposed method.
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