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Abstract

The probabilistic distribution of local time of a homogeneous transient dif-
fusion process is found. To this end, a second order differential equation corre-
sponding to the process generator is considered, and properties of its monotone
solutions as functions of a parameter are established with the help of analytic
tools. At the same time a probabilistic representation of monotone solutions are
used. Combining the techniques of differential equations theory and stochastic
processes theory allowed to identify the parameter of exponential distribution of
the local time.

Consider a family of one-dimensional homogeneous diffusion processes {Xx
t , t ≥

0, x ∈ R} defined on a standard filtered probability space {Ω,F , {Ft}t≥0, P} by a
stochastic differential equation

dXx
t = b(Xx

t )dt+ a(Xx
t )dWt, t ≥ 0. (1)

Here Xx
0 = x ∈ R is the initial condition, {Wt, t ≥ 0} is a standard Wiener process.

When considering objects for which the initial condition is irrelevant, we will denote
the process in question by. Let the coefficients of equation (1) be continuous and satisfy
any conditions for existence of a weak solution. Let also a(x) 6= 0, x ∈ R. Define the
following objects related to the family {Xx

t , t ≥ 0, x ∈ R}:
1) For f ∈ C2(R) define the generator of diffusion process X as

Lf(x) =
a2(x)

2
f ′′(x) + b(x)f ′(x).

2) Define functions

ϕ(x0, x) = exp

{
−2

∫ z

x0

b(u)

a2(u)
du

}
, Φ(x0, x) =

∫ x

x0

ϕ(x0, z)dz, x0, x ∈ R∪{−∞,+∞}.

Note that for a fixed x0 ∈ R the function Φ(x0, ·) solves a second order homogeneous
differential equation LΦ(x0, ·) = 0.

3) For x, y ∈ R let τx
y = inf{t ≥ 0, Xx

t = y} be the first moment of hitting point y,
and for x ∈ (a, b) let τx

a,b = inf{t ≥ 0, Xx
t /∈ (a, b)} = τx

a ∧ τx
b be the first moment of

exiting interval (a, b). (We use the convention inf ∅ = +∞.)
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4) Define a local time of process Xx at y ∈ R on interval [0, t] (the factor a2(y)
is included to agree with the general Meyer–Tanaka definition of local times for semi-
martingales [1]):

Lx
t (y) = a2(y) lim

ε↓0

1

2ε

∫ t

0

I{|Xx
s − y| ≤ ε}ds.

The limit exists almost surely and defines a continuous non-decreasing process {Lx
t (y), t ≥ 0}

for all x, y ∈ R. The local time on the whole interval [0,+∞) will be denoted by Lx
∞(y).

The aim of the paper is to determine the probabilistic distribution of Lx
∞. We

remark that this problem was considered in papers [1] and [2], but the distribution pa-
rameter were not determined explicitly, rather as limits of some functionals of solutions
to stochastic differential equations, see formula (4).

According to [5, 6], in the case where Φ(x,+∞) = −Φ(x,−∞) = +∞ for some
(equivalently, for all) x ∈ R, the diffusion process X is recurrent, i.e. P{limt→+∞X

x
t =

+∞, limt→+∞X
x
t = −∞} = 1. Therefore, Lx

∞(y) = +∞ for all x, y ∈ R a.s. The
behavior of inverse local time process was studied in the recurrent case in [1, 3, 4].

For this reason, we will consider only the case of a transient process, where at least
one of the integrals Φ(x0,+∞) and Φ(−∞, x0) is finite.

Further, note that it is enough to consider the case x = y. Indeed, by the strong
Markov property of the process X, for any l ≥ 0

P (Lx
∞(y) > l) = P (Ly

∞(y) > l)P (τx
y < +∞).

The probability P (τx
y < +∞) = 1 − P (τx

y = +∞) can be found with the help of
well-known formula (see e.g. [8, Section VIII.6, (18)]): for x ∈ (a, b)

P (Xx
τa,b

= b) =
Φ(a, x)

Φ(a, b)
.

Then the value of probabilty in question depends on x, y, and integrals Φ(x,+∞),
Φ(x,−∞). Specifically, if x > y, then

P (τx
y = ∞) = lim

a→+∞
P (Xx

τy,a
= a) = lim

a→+∞

Φ(y, x)

Φ(y, a)
;

so for x > y

P (τx
y = +∞) =

{
Φ(y,x)

Φ(y,+∞)
, Φ(x,+∞) < +∞,

0, Φ(x,+∞) = +∞.
(2)

For x < y

P (τx
y = ∞) = lim

a→−∞

(
1− P (Xx

τa,y
= y)

)
= lim

a→−∞

Φ(a, y)− Φ(a, x)

Φ(a, y)
=

= lim
a→−∞

φ(a, x)Φ(x, y)

−φ(a, y)Φ(y, a)
= lim

a→−∞

−φ(a, x)φ(x, y)Φ(y, x)

−φ(a, y)Φ(y, a)
= lim

a→−∞

Φ(y, x)

Φ(y, a)
;

therefore

P (τx
y = +∞) =

{
Φ(y,x)

Φ(y,−∞)
, −Φ(x,−∞) < +∞,

1, −Φ(x,−∞) = +∞.
(3)
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Thus it is indeed sufficient to determine distributions of variables Lx
∞(x). To this end,

we will use the following facts.
1. According to [1, Theorem 1], P (Lx

∞(x) > l) = exp(−lψx(0)), where

ψx(0) = ψx,+(0) + ψx,−(0), ψx,±(0) = ±1

2
lim
λ↓0

y′λ,±(x)

yλ,±(x)
; (4)

the functions yλ,+ yλ,− are, respectively, the increasing and decreasing solutions of
equation (λ > 0 is fixed)

Ly = λy. (5)

2. According to [6], functions yλ,+ and yλ,− have probabilistic representations

yλ,+(x) =

{
Ee−λτx

0 , x < 0,

(Ee−λτ0
x )−1, x ≥ 0

yλ,−(x) =

{
Ee−λτx

0 , x ≥ 0,

(Ee−λτ0
x )−1, x < 0.

(6)

(We set e−λt = 0 for t = +∞, λ > 0.)
3. Any solution yλ(x) to equation (5) admits an integral representation

yλ(x) = C1(λ) + C2(λ)Φ(x0, x) + 2λ

∫ x

x0

Φ(s, x)

a2(s)
yλ(s)ds, (7)

y′λ(x) = C2(λ)ϕ(x0, x) + 2λ

∫ x

x0

ϕ(s, x)

a2(s)
yλ(s)ds. (8)

Theorem 1. The following formula holds true:

ψx(0) =
1

2

(
1

Φ(x,+∞)
− 1

Φ(x,−∞)

)
, (9)

where 1
∞ := 0.

Corollary 1. 1. In each of the cases: x = y; x < y and −Φ(0,−∞) = +∞; x > y
and Φ(0,+∞) = +∞, the local time Lx

∞(y) is exponentially distributed with parameter
ψy(0) given by (9).

2. If x < y and −Φ(0,−∞) < +∞, then the local time Lx
∞(y) is distributed as

κξ, where ξ is exponentially distributed with parameter ψy(0), κ is an independent of
ξ Bernoulli random variable with

P (κ = 0) = 1− P (κ = 1) =
Φ(y, x)

Φ(y,−∞)
.

3. If x > y and Φ(0,+∞) < +∞, then the local time Lx
∞(y) is distributed as κξ,

where ξ is exponentially distributed with parameter ψy(0), κ is an independent of ξ
Bernoulli random variable with

P (κ = 0) = 1− P (κ = 1) =
Φ(y, x)

Φ(y,+∞)
.
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