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Abstract

A polynomial algorithm for calculating a likelihood function under the fixed
parameters is developed. Maximum likelihood estimators for parameters of em-
bedding and transition matrix are constructed and analyzed.

1 Introduction

Nowadays the models of embedding are used in lots of scientific research areas: intel-
lectual property rights, genetics [2, 3, 5]. It is critical to know if some additional bits
are embedded into data sequences. The problem is to make a decision whether a data
sequence contains additional bits or not [2,3]. Unfortunately, the most part of existing
strategies for solving this problem is based on empirical characteristics. So the decision
maker is very dependent on the learning data sets. This article is a step in direction
of theoretical analysis of such mathematical models of embedding.

2 Mathematical model of embedding

At first, let us introduce the notations: V = {0, 1} is a binary alphabet, VT – a set
of binary T -dimensional vectors, N – a set of natural numbers, I{A} – an indicator
function of the event A, ut2t1 = (ut1 , . . . , ut2) ∈ Vt2−t1+1 (t1, t2 ∈ N, t1 ≤ t2) – a binary
string of t2 − t1 + 1 bits, w(·) – a Hamming weight.

Let us assume that a cover sequence xT1 = (x1, x2, . . . , xT ) ∈ VT , xt ∈ V, t =
1, . . . , T, of size T is a stationary binary Markov chain [1] of order 1 with a symmetric
transition probabilities matrix P = P (ε) = (pj0,j1(ε)), j0, j1 ∈ V :

P (ε) =
1

2

(
1 + ε 1− ε
1− ε 1 + ε

)
, pj0,j1 = P{xt+1 = j1|xt = j0} =

1

2
(1 + (−1)j0+j1ε). (1)

Here ε ∈ (0, 1) is a model parameter: if ε = 0 than xT1 is a sequence of i.i.d random vari-
ables and this situation is investigated in [3]. The stationary probability distribution
of xT1 is equal to π = (1/2, 1/2).

A hidden random sequence ξM1 = (ξ1, . . . , ξM) ∈ VM , M ≤ T, is considered to be a
sequence of i.i.d. Bernoulli random variables: P{ξt = j} = θj, j ∈ V, θ1 = 1− θ0, t =
1, . . . ,M. As a rule the hidden sequence {ξt} has a symmetric probability distribution
as it is often compressed before embedding: θ1 = θ0 = 1/2.
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Let now introduce a special (q, r)-block model of a sequence γT1 ∈ VT which de-
termine the process of embedding. At first, we divide the cover sequence xT1 into the
blocks of the size q: x(1) = xq1, x(2) = x2qq+1, . . . , x(K) = xKq

(K−1)q+1. Here we assume that

T = qK. Then we use secondary random variables ζk ∈ V, k = 1, . . . , T/q, which
are i.i.d. Bernoulli random variables: P{ζk = 1} = 1 − P{ζk = 0} = δ. These new
variables are responsible for choosing the blocks of the cover sequence xT1 for embed-
ding. If ζk = 1 than in r randomly chosen bits of the block x(k) we embed r bits of
the hidden sequence, if ζk = 0 than the embedding operation in the block x(k) is not
executed. The sequence γT1 is consisted of independent blocks which have the following
probability distribution:

P{γkq(k−1)q+1 = uq1} =


1− δ, w(uq1) = 0,
δ/Cr

q , w(uq1) = r,
0, w(uq1) /∈ {0, r},

k = 1, . . . , K, uq1 ∈ Vq. (2)

We notice that the maximum number of embedding bits is equal to Tr/q = Kr and the
power of a set of all possible sequences γT1 is (1 +Cr

q )
T/q according to its construction.

Let remark that if r = q = 1 than the power of a set of all possible γT1 values is equal
to 2T .

When the hidden sequence ξM1 is embedded to the Markov cover sequence xT1 we
get a new random sequence Y T

1 ∈ VT :

Yt = γtξτt + (1− γt)xt =

{
xt, γt = 0,
ξτt , γt = 1.

(3)

The random sequences {xt}, {ξt}, {γt} are considered to be independent.

3 Statistical parameters estimation

Initially, let divide a set Vt of binary t-dimensional vectors into t + 1 disjoint subsets
(fig. 1):

Vt = Γ
(t)
0 ∪ Γ

(t)
1 ∪ . . . ∪ Γ

(t)
t , (4)

where

Γ
(t)
0 = {ut1 ∈ Vt : ut = 1},

Γ
(t)
1 = {ut1 ∈ Vt : ut = ut−1 = 0},

Γ
(t)
j = {ut1 ∈ Vt : ut = 0, ut−1 = . . . = ut−j−1 = 1, ut−j = 0}, 1 < j < t,

Γ
(t)
t = {ut1 ∈ Vt : ut = 0, ut−1 = . . . = u1 = 1}.

Using the division (4) let us define a function of binary variables ut1, y
t
1 ∈ Vt:

φt(u
t
1, y

t
1) =


θyt , u

t
1 ∈ Γ

(t)
0 ,

1
2
(1 + (−1)yt−j+ytεj), ut1 ∈ Γ

(t)
j , 1 ≤ j < t,

1
2
, ut1 ∈ Γ

(t)
t .

41



Figure 1: The illustration of the set γt1 division; dashed line indicates all possible pathes

Under the introduced notations a likelihood function for an observed sequence
yT1 ∈ VT that contains a hidden sequence is

L(ε, δ) = P{Y T
1 = yT1 } =

∑
uT
1 ∈V (q,r)

T

(1− δ)b0(u
T
1 )(δ/Cr

q )
br(uT

1 )

T∏
t=1

φt(u
t
1, y

t
1). (5)

where a set V
(q,r)
T = {uT1 ∈ VT : bh(u

T
1 ) = 0, h ∈ {1, . . . , q}/{r}} is needed according

to the construction of the sequence {γ} which determines the points for embedding,

bh(u
T
1 ) =

∑T/q
k=1 I{w(u

qk
q(k−1)+1) = h}. Calculation of L(ε, δ) according to its direct

definition (5) involves on the order of O(T (1 + Cr
q )

T/q) calculations.

MLE-estimators ε̂, δ̂ of the model parameters ε, δ are the solution of problem

L(ε, δ) = E{Lγ1,...,γT (ε)} → max
ε∈(−1,1), δ∈[0,1]

.

where Lu1,...,uT
(ε) = P{Y T

1 = yT1 |γT1 = uT1 } is a probability of observations yT1 on
condition with γT1 = uT1 .

Lemma 1. Under the assumptions (1)-(3), if q > r and t > 2r + 1 than

P{γt1 ∈
t∪

j=2r+2

Γ
(t)
j } = 0,

P{Yt = yt|Y t−1
1 = yt−1

1 , γt1 = ut1} = ψt(u
t
t−2r−1, y

t
t−2r−1) =

=

{
θyt , ut1 ∈ Γ

(t)
0 ,

1
2
(1 + (−1)yt−j+ytεj), ut1 ∈ Γ

(t)
j , 1 ≤ j ≤ 2r + 1

(6)

and a random sequence {Yt} with a constant sequence {γt} is a supervised Markov
chain of conditional order. The conditional order st ∈ {0, . . . , 2r + 1} is dependent on

a sequence {γt}: st = j, if ut1 ∈ Γ
(t)
j .
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The lemma 1 provides a developing of a polynomial algorithm for calculation the
likelihood function L(ε, δ) which is based on the algorithm “Forward” [4].

We denote by s ∈ N a secondary parameter of the algorithm and by αt(u0, . . . , ur−1) =
P{Y1 = y1, . . . , Yt = yt, γt−s+1 = u0, . . . , γt = us−1}, t > s, the probability of the partial
observations yt1 and states us−1

0 at times t− s+ 1, . . . , t of the sequence {γt}.

Theorem 1. Under the assumptions (1)-(3), q > r, s > 2r + 1 the probabilities
αt(u0, . . . , us−1), t = s+ 1, s+ 2, . . . , T, can be calculated recurrently:

αt(u0, . . . , us−1) = ct,us−2,us−1

∑
u−1∈V

αt−1(u−1, . . . , us−2)ψt(u
s−1
s−2r−2, y

t
t−2r−1), (7)

where ψt is defined in (6), the probabilities ct,us−2,us−1 = P{γt = us−1|γt−1 = us−2}.

The probabilities ct,j0,j1 , j0, j1 ∈ V, can be calculated according to the construction
of the {γt} sequence. The initial probabilities αt(u0, . . . , ut−1), t = 1, . . . , s are

α1(u0) = q1,0,u0φ1(u0, y1),

αt(u0, . . . , ut−1) = αt−1(u1, . . . , ut−1)ct,ut−2,ut−1φt(u
t−1
0 , yt−1

0 ), 2 ≤ t ≤ s.

The likelihood function L(ε, δ) is equal to
∑

us−1
0 ∈Vs

αT (u0, . . . , us−1). The proposed

algorithm for calculating L(ε, δ) based on (7) involves on the order of O(T22r) calcu-
lations if we set a parameter s to its minimum possible value 2r + 2.

To compute a likelihood function (e.g. using gradient-search procedure) we also
need to perform the initial statistical estimation of the model parameters.
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