ON THE NUMBER OF SUBFUNCTIONS OF RANDOM BOOLEAN FUNCTION WHICH ARE CLOSE TO THE AFFINE FUNCTIONS SET

A.A. Serov Steklov Mathematical Institute of RAS

> Moscow e-mail: serov@mi.ras.ru

Abstract

We present formulas and inequalities for the mean and the variance of the number of subfunctions of a random Boolean function such that their Hamming distances to the set of affine Boolean functions do not exceed a given value. The critical values of the number of variables of subfunctions having good affine approximations are obtained.

This work was supported by RFBR, grant 11-01-00139.

Let $V_n = (GF(2))^n$. Denote by $\mathbb{F}_2^{V_n}$ the set of all Boolean functions and by \mathbb{A}_n the set of all affine functions of n Boolean variables. Let $\mathbb{F}_2^{V_n}(r) \subseteq \mathbb{F}_2^{V_n}$ be the set of all Boolean functions with Hamming distance to \mathbb{A}_n not exceeding r.

Let $f = f(x_1, ..., x_n) \in \mathbb{F}_2^{V_n}$. For the partition $\{1, ..., n\} = I_n^s \cup J_n^{n-s}$, $I_n^s = \{i_1, ..., i_s\}$, $J_n^{n-s} = \{j_1, ..., j_{n-s}\}$ and for the collection of constants $C_{n-s} = \{c_1, ..., c_{n-s} \in \mathbb{F}_2\}$ we define the subfunction $g(J_n^{n-s}, C_{n-s}; y_1, ..., y_s) \in \mathbb{F}_2^{V_s}$ of f as the function obtained from $f(x_1, ..., x_n)$ by the following change of variables: $x_{j_k} = c_k$ (k = 1, ..., n - s), and $x_{i_m} = y_m$ (m = 1, ..., s).

Let $\nu(f, s, r)$ be the number of subfunctions $g(J_n^{n-s}, C_{n-s}; y_1, \dots, y_s) \in \mathbb{F}_2^{V_s}$ with distance from \mathbb{A}_s not exceeding r, i.e. the number of pairs (J_n^{n-s}, C_{n-s}) such that $g(J_n^{n-s}, C_{n-s}) \in \mathbb{F}_2^{V_s}(r)$.

Theorem 1. If $\varphi(x_1,\ldots,x_n)$ is a random Boolean function with the uniform distribution on $\mathbb{F}_2^{V_n}$ then for $r < 2^{s-2}$

$$\mathbf{E}\,\nu(\varphi, s, r) = C_n^s \, 2^{n-2^s+1} \sum_{j=0}^r C_{2^s}^j,$$

$$2^{n-2^s+1}C_n^sC_{2^s}^r \leqslant \mathbf{E}\,\nu(\varphi,s,r) \leqslant 2^{n+1}\,C_n^s\left(\frac{2}{3}\right)^{2^{s-2}}.$$

Remark 1. Note that the left hand side of the inequality tends to infinity if $s \le \log_2 n$, $n \to \infty$, and the right hand side tends to 0 if $s \ge \log_2 n + 3$, $n \to \infty$; thus a "threshold" value of s belongs to the range from $\log_2 n$ to $\log_2 n + 3$ when $n \to \infty$.

State 1. a) The values of s maximizing $\mathbf{E} \nu(f, s, 2^{s-2} - 1)$ for the sufficiently large n belongs to the interval

$$[\log_2 \ln n + 2, 5, \log_2 \ln n + 3, 5].$$

b) The inequality $\mathbf{E} \nu(f, s, 2^{s-2} - 1) < 1$ holds for $s \ge \log_2 n + 4$ $(n \ge 1)$ and for $s \ge \log_2 n + 3$ $(n \ge 70)$.

State 2. If f be a random Boolean function with the uniform distribution on $\mathbb{F}_2^{V_n}$ then for $r < 2^{s-3}$

$$\mathbf{D}\nu(f,s,r) < \left(1 - 2^{s+1-2^s} \sum_{j=0}^r C_{2^s}^j\right) \mathbf{E}\nu(f,s,r) + \frac{3}{4} \frac{s \cdot C_n^s \cdot 2^{2n+5s-5}}{\pi \sqrt{\pi 2^{s-2}} 2^{s-2}} \exp\left\{\frac{-3 \cdot 2^{2s-3} - 4r(r+1) + 2^{s-1}(4r+3)}{2^s + 2}\right\}.$$

Theorem 2. If f is a random Boolean function with the uniform distribution on $\mathbb{F}_2^{V_n}$ then for $r < 2^{s-2}$

$$\mathbf{E}\nu(f,s,r)^{[2]} = \left(2^{n-s}C_n^{n-s}(2^{n-s}C_n^{n-s}-1) - C_n^{n-s}\sum_{d=\max\{0,2s-n\}}^{s-1} 2^{n-d}C_{n-s}^{d+n-2s}C_s^{s-d}\right) \times 2^{2s+2-2^{s+1}} \left(\sum_{j=0}^r C_{2s}^j\right)^2 + \frac{C_n^{n-s}}{2^{2s+1}}\sum_{d=\max\{0,2s-n\}}^{s-1} 2^{n+2^d-d}C_{n-s}^{d+n-2s}C_s^{s-d} \times \left(2^{2s+1-d}\left(|Z_1(l_1,l_2)| + |Z_2(l_1,l_2)| - 2|Z_3(l_1,l_2)|\right) + 2^{2(s+1)}|Z_3(l_1,l_2)|\right),$$

where

$$\begin{split} |Z_1(l_1,l_2)| &= \sum_{k_1=0}^{\min\{2^d,r\}} C_{2^d}^{k_1} \left(\sum_{k_2=0}^{r-k_1} C_{2^s-2^d}^{k_2}\right)^2, \\ |Z_2(l_1,l_2)| &= \sum_{k_1=\max\{2^d-r,0\}}^{\min\{2^d,r\}} C_{2^d}^{k_1} \sum_{k_2=0}^{r-k_1} C_{2^s-2^d}^{k_2} \sum_{k_4=0}^{r-2^d+k_1} C_{2^s-2^d}^{k_4}, \\ |Z_3(l_1,l_2)| &= \sum_{m_0=0}^{\min\{2^{d-1},r\}} C_{2^{d-1}}^{m_0} \times \\ \times \sum_{m_1=\max\{0,\,m_0+2^{d-1}-r\}}^{m_1} C_{2^{d-1}}^{m_1} \sum_{k_2=0}^{r-(m_0+m_1)} C_{2^s-2^d}^{k_2} \sum_{k_4=0}^{r-(m_0+2^{d-1}-m_1)} C_{2^s-2^d}^{k_4}. \end{split}$$

References

[1] Logachev O. A., Salnikov A. A., Yashchenko V. V. Boolean functions in coding theory and cryptology (in Russian) — M.: MCCME, 2004.