Белорусский государственный университет

Генетический анализ

Учебная программа учреждения высшего образования по учебной дисциплине для специальности:

1-31 01 01 Биология специализаций 1-31 01 01-01 07 и 1-31 01 01-02 07 Генетика

Факультет	биологический (название факультета)
Кафедра	Генетики (название кафедры)
Курс (курсы)4/5	
Семестр (семестры)7/9-	-10
Лекции <u>26 / 28</u> (количество часов)	Экзамен (семестр)
Практические (семинарские) Зачет
Занятия (количество часов)	(семестр)
Лабораторные	Курсовой проект (работа)
Занятия 10 / 6 (количество часов) УСР 4 / (количество часов)	(семестр)
Всего аудиторных часов по дисциплине 40/3 (количество часов)	
Всего часов по дисциплине 102 / (количество часов)	
Составил(а) А.В. Лагодич, к	.б.н., М.П. Куницкая

(И.О., Фамилия, степень, звание)

Учебная программа составлена на основе <u>учебной программы учреждения</u> высшего образования по учебной дисциплине «Генетический анализ»

(название типовой учебной

03.10.2011 г., регистрационный № УД-4685/уч.

программы (учебной программы (см. разделы 5-7 Порядка)), дата утверждения, регистрационный номер)

Рассмотрена и рекомендована к утверждению на заседании кафедры	
генетики	

(название кафедры)

03.05.2013 г., протокол № 16

(дата, номер протокола)

Заведующий кафедрой

<u>Н.П. Максимова</u> (И.О.Фамилия)

Одобрена и рекомендована к утверждению учебно-методической комиссией биологического факультета

30.05.2013 г., протокол № 10 (дата, номер протокола)

Председатель

_ В.Д. Поликсенова

(И.О.Фамилия)

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

По своей сути генетический анализ является методологической основой генетики. Первый специфический метод генетического анализа был предложен еще в 1865 г. основателем генетики И.Г. Менделем и был представлен им как гибридологический метод анализа отдельных признаков.

Классическое представление о генетическом анализе было сформировано одним из его основоположников – Александром Сергеевичем Серебровским и не утратило актуальности и по сей день. Согласно представлениям А.С. Серебровского, генетический анализ являет собой «систему опытов, наблюдений и вычислений, имеющих целью разложение свойств (признаков) организма на отдельные наследственные элементы, «отдельные признаки», и изучение свойств соответствующих им генов».

Теория генетического анализа связана с построением математических, экспериментальных моделей, помогающих понять генетических процессов и явлений. Арсенал методов генетического анализа весьма богат и разнообразен, начиная от классических методов менделеевского создания специальных линий-анализаторов, анализа ДО использования селективных сред, гибридизации соматических клеток, а так же применения обширнейших по своей реализации и масштабности молекулярно-генетических приемов и методов анализа. Принципы и методы генетического анализа сейчас широко используются как для решения собственно генетических задач, так и в таких научных дисциплинах как молекулярная биология, биология развития; непосредственное прикладное значение они находят в медицинской и криминалистической практике.

Предлагаемый в спецкурсе материал предполагает рассмотрение основных методов исследования, использующихся для всестороннего изучения структуры и функции генетических детерминант, определяющих фенотипические признаки живых организмов. Спецкурс призван выработать у студентов навыки, позволяющие с позиции основных принципов и логики генетического анализа, изучать фенотипические свойства организмов различного уровня организации. Способность использовать комплексный подход в изучении генетических детерминант, безусловно, будет полезен и даже необходим студентам-генетикам в их дальнейшей практической деятельности

Цель курса – сформировать у студентов целостную систему знаний о реализации генетической информации в биологических системах.

В задачи учебной дисциплины входит изучение и освоение разных подходов и методов генетического анализа, возможностей их применения и выработка алгоритмов выбора соответствующих методов для анализа результатов генетических экспериментов.

В результате изучения дисциплины обучаемый должен:

знать:

- закономерности наследования признаков при моно-, ди- и полигибридных скрещиваниях;

- биологические основы размножения растений и животных;
- клеточные, хромосомные, генные и молекулярные механизмы наследственности;
- механизмы изменчивости генетического материала; закономерности онтогенеза;
 - основы генетики человека и его наследственных заболеваний;
 - генетические основы селекции;
 - вопросы экологической и популяционной генетики
- химические основы наследственной информации, включая химическое строение и свойства нуклеиновых кислот, основные пути и механизмы реализации генетической информации;
- теоретическую и практическую значимость генетического анализа, взаимосвязь с другими естественными науками;
- основные методы исследования, использующиеся для всестороннего изучения структуры и функции генетических детерминант, определяющих фенотипические признаки живых организмов;
- новейшие достижения в области биохимии, физики, молекулярной генетики, селекции, биотехнологии и перспективы их использования для генетического анализа.

уметь:

- использовать знания генетики для объяснения важнейших физиологических процессов, протекающих в живых организмах, как в норме, так и при возникновении патологии;
- проводить и анализировать генетический эксперимент; с позиций основных принципов и логики генетического анализа объяснять получаемые результаты и наблюдаемые фенотипические признаки при работе с организмами различного уровня организации;
- использовать комплексный подход в изучении генетических детерминант и контролируемых ими признаков (морфо-физиологические, генетические, биохимические, молекулярно-биологические, популяционные методы исследований в экспериментальной биологии);
- связывать данные генетики с достижениями цитологии, биологических основ размножения растений и животых, онтогенеза, эволюционной теории и селекции, а также с успехами в области биохимии нуклеиновых кислот, молекулярной биологии, микробиологии, вирусологии и иммунологии;
- использовать достижения генетики в решении задач селекции, медицины, экологии и биотехнологии, а также применять полученные знания в дальнейшей практической деятельности.

владеть:

- навыками использования различных подходов генетического анализа для установления генотипа анализируемых организмов.

При чтении лекционного курса необходимо применять технические средства обучения для демонстрации слайдов и презентаций, наглядные материалы в виде таблиц и схем.

Для организации самостоятельной работы студентов по курсу необходимо использовать современные информационные технологии: разместить в сетевом доступе комплекс учебных и учебно-методических материалов (программа, методические указания к лабораторным занятиям, список рекомендуемой литературы и информационных ресурсов, задания в тестовой форме для самоконтроля и др.).

Теоретические положения лекционного курса развиваются и закрепляются на лабораторных занятиях, при выполнении которых студенты приобретают навыки анализа наследования признаков у представителей различных таксономических групп.

Эффективность самостоятельной работы студентов целесообразно проверять в ходе текущего и итогового контроля знаний в форме устного опроса, коллоквиумов, тестового компьютерного контроля по темам и разделам курса. Для общей оценки качества усвоения студентами учебного материала рекомендуется использование накопительной рейтинговой системы.

СОДЕРЖАНИЕ УЧЕБНОГО МАТЕРИАЛА

ВВЕДЕНИЕ

Предмет генетического анализа. Анализ сложных и элементарных признаков. Генетические коллекции, их роль и использование в генетическом анализе (особенности создания и поддержания коллекций растений, животных, микроорганизмов, банки тканей, клеточных культур, генетического анализа с учетом разных уровней организации (на уровне популяций, организмов, клеток, молекул нуклеиновых кислот). Логика, принцип и этапы генетического анализа. Методы генетического анализа (гибридологический, генеалогический, цитогенетический, гибридизации соматических клеток, молекулярно-генетический и биохимический). Значение биологических особенностей объекта для генетического анализа. Жизненные циклы и особенности размножения животных, растений, микроорганизмов и вирусов. Модельные объекты и их роль в генетическом анализе.

1. ГЕНЕТИЧЕСКИЙ АНАЛИЗ НА УРОВНЕ ОРГАНИЗМА

Генетический анализ на уровне организма, его особенности разрешающая способность. Гибридологический анализ. Системы скрещиваний. Систематические отклонения в расщеплениях в ряду поколений при наследовании моногенных признаков у высших растений и животных и их причины. Нарушение нормального возможные расхождения вследствие мейотических мутаций Нарушение нормальной конъюгации гомологичных хромосом и негомологичное спаривание - одна из причин неравновероятного образования гамет разного генотипа. Влияние перестроек расхождение гомологичных мейозе. хромосомы на хромосом «Предпочтительное» расхождение хромосом в мейозе. Преимущественное оплодотворении гаметами определенного генотипа, обусловленное разной постмейотической активностью генов. Влияние на расщепление летальных избирательную мутаций, вызывающих гибель гамет. Системы самонесовместимости у растений, методы их изучения и влияние расщепление по другим генам. Зависимость расщепления от выживаемости зигот разного генотипа. Неполная пенетрантность и экспрессивность. Влияние способа размножения на расщепление. Наследование при нерегулярных типах полового размножения. Анализ наследования отдельных признаков у низших эукариот. Тетрадный анализ. Наследование при полигенных различиях между исходными формами. Независимое наследование взаимодействующих генов. Сцепленное наследование взаимодействующих генов. Роль циклических скрещиваний в генанализе при установлении числа генов, контролирующих признак. Изучение биохимических различий между нормальной и мутантными формами – один из путей анализа неаллельных взаимодействий. Особенности наследования у полиплоидов. Наследование у аллополиплоидов. Наследование у автополиплоидов. Анализ совместного наследования нескольких признаков. Анализ независимого наследования при локализации генов в аутосомах, половых хромосомах. Методы определения частоты кроссинговера (метод произведений, метод наибольшего правдоподобия и др.). Тетрадный анализ независимого и сцепленного наследования. Определение группы сцепления. Построение генетических карт. Картирование и принципы построения генетических карт у бактерий. Принципы картирования вирусов.

2. ГЕНЕТИЧЕСКИЙ АНАЛИЗ НА КЛЕТОЧНОМ УРОВНЕ

Генетический анализ на клеточном уровне, его особенности и разрешающая способность. Получение и характеристика исходного материала для цитогенетических исследований. Анализ политенных и метафазных хромосом. Метод гибридизации соматических клеток. Банки клеточных культур. Метод гибридизации in situ. Молекулярно-генетические маркеры и их использование для картирования генов с неизвестной функцией. Построение цитологических карт.

3. ГЕНЕТИЧЕСКИЙ АНАЛИЗ НА МОЛЕКУЛЯРНОМ УРОВНЕ ОРГАНИЗАЦИИ

Генетический анализ на молекулярном уровне организации, его особенности и разрешающая способность. Этапы и методы изучения гена. Внутригенное картирование. Тест на аллелизм как этап изучения гена.

Внутригенное картирование у прокариот, грибов-аскомицетов, высших эукариот.

Основные подходы для изучения организации молекул нуклеиновых кислот. Методы идентификации и выделения отдельных генетических детерминант. Синтез молекул ДНК in vitro, молекулярные зонды (особенности включения метки в кольцевые и линейные молекулы ДНК). Методы гибридизации. Полимеразная цепная реакция (ПЦР), особенности и сферы применения (принципы конструирования праймеров, режимы полимеразной цепной реакции). Возможности ПЦР. Применение ПЦР для идентификации генов с использованием ДНК-маркеров. Особенности организации векторных систем, использующихся для клонирования генетического материала растений, животных и микроорганизмов. Принципы клонирования. Рестрикционное картирование, рестрикционные карты. Методы микро- и макросеквенирования, особенности и принципы их использования. Компьютерные программы, использующиеся для анализа секвенированной последовательности. Карты геномов. Особенности организации генетического материала про и эукариот, выявленные на основании секвенирования.

Сравнительный анализ карт геномов, физических карт, цитологических карт, генетических карт и их роль при создании организмов с заданными свойствами для биотехнологического использования.

Дневная форма получения высшего образования

№	Наименование	Количество часов							
п/п	разделов и тем		Аудиторные						
		Всего	Лекции	Лаб. занятия	УСР	Самост. работа			
	Введение	10	2			8			
1	Генетический анализ на уровне организма	16	6	2		8			
2	Картирование генов	24	4	4	2	14			
3	Генетический анализ на клеточном уровне	22	6	2		16			
4	Генетический анализ на молекулярном уровне организации	30	8	2	2	16			
ИТОІ	ГО:	102	26	10	4	62			

Заочная форма получения высшего образования

No	Наименование	Количество часов							
п/п	разделов и тем		A	Самост.					
	•	Всего	Лекции	Практ. занятия	КСР	работа			
	Введение	8	2			6			
1	Генетический анализ								
	на уровне организма	120	18	2		100			
2	Генетический анализ								
	на клеточном уровне	20	4			16			
3	Генетический анализ								
	на молекулярном	24	4	4		16			
	уровне организации								
ИТОІ	O:	172	28	6		138			

УЧЕБНО-МЕТОДИЧЕСКАЯ КАРТА УЧЕБНОЙ ДИСЦИПЛИНЫ

Дневная форма получения высшего образования

J,		Количество аудиторных часов				83		
Номер раздела, темы, занятия	Название раздела, темы, занятия; перечень изучаемых вопросов	Лекции	Практические занятия	лабораторные занятия	Управляемая самостоятельная работа	Материальное обеспечение занятия (наглядные, методические пособия и др.)	Литература	Формы контроля знаний
1	2	3	4	5	6	7	8	9
1	Введение. Предмет, задачи и методы генетического анализа. Роль модельного объекта в генетическом анализе.	2 2				Мультимедия презентация (слайды для кадоскопа)	ЛО1,2,5,7,9 ДО1-5	
2	1. Генетический анализ на уровне организма Особенности и разрешающая способность. Гибридологический метод. Систематические отклонения от модельных расщеплений. Наследование при полигенных различиях между родительскими формами. Анализ совместного наследования нескольких признаков.	6 6		2 2		Мультимедия презентация (слайды для кадоскопа)	ЛО5,7,9 ДО1,4,6	письмен- ный опрос
3	2. Картирование генов. Тетрадный анализ. Картирование хромосом. Построение генетических карт. Картирование бактерий и вирусов. Внутригенное картирование.	4 4		4 4	2	Мультимедия презентация (слайды для кадоскопа)	ЛО1, 3, 5, 8	письмен- ный опрос
4	3. Генетический анализ на клеточном уровне Особенности и разрешающая способность. Характеристика исходного материала. Анализ политенных и метафазных хромосом. Метод гибридизации соматических клетов. Банки клеточных культур. Метод гибридизации <i>in situ</i> . Молекулярно-генетические маркеры. Построение цитологических карт.	6 6		2 2		Мультимедия презентация (слайды для кадоскопа)	ЛО1,4,5,8,9 ДО2,3	Тест

5	4. Генетический анализ на молекулярном	8	2	2			
	уровне организации	8	2		Мультимедия	ЛО1, 2, 3,	Экзамен
	Методы идентификации и выделения отдельных				презентация	4, 6, 8	
	генетических детерминант. Метод полимеразной				(слайды для	ДО5-7	
	цепной реакции. Особенности генетической				кадоскопа)		
	организации генетических систем для						
	клонирования генов. Рестрикционное						
	картирование, рестрикционные карты. Метод						
	секвенирования. Карты геномов. Особенности						
	организации генетического материала про- и						
	эукариот, выявленные на основании						
	секвенирования.						

Заочная форма получения высшего образования

I,		Колич	ество ауд	циторнь	іх часов	<u> </u>		
Номер раздела, темы, занятия	Название раздела, темы, занятия; перечень изучаемых вопросов	Лекции	Практические занятия	лабораторные занятия	Управляемая самостоятельная работа	Материальное обеспечение занятия (наглядные, методические пособия и др.)	Литература	Формы контроля знаний
1	2	3	4	5	6	7	8	9
1	Введение. Предмет, задачи и методы генетического анализа. Генетические коллекции, их роль и использование в генетическом анализе. Объекты генетического анализа.	2 2				Мультимедия презентация	ЛО1,2,5,7,9 ДО1-5	
2	1. Генетический анализ на уровне организма Особенности и разрешающая способность. Логика анализа и статистическая проверка гипотез. Наследование признака при моногенных различиях между исходными формами. Систематические отклонения от стандартных расщеплений и их причины. Влияние хромосомных перестроек на изменение	18 18	2 2			Мультимедия презентация	ЛО5,7,9 ДО1,4,6	письмен- ный опрос

			1	, ,	1		
	стандартных формул расщепления. Анализ						
	генетической структуры популяции. Тетрадный						
	анализ. Наследование при полигенных различиях						
	между родительскими формами. Независимое						
	наследование взаимодействующих генов.						
	Циклические скрещивания. Особенности						
	наследования у полиплоидов. Анализ						
	совместного наследования нескольких						
	признаков. Анализ независимого наследования						
	при локализации генов в аутосомах и половых						
	хромосомах Сцепленное наследование						
	признаков. Определение группы сцепления.						
	Локализация гена в группе сцепления.						
	Картирование хромосом.						
3	2. Генетический анализ на клеточном уровне						
	Особенности и разрешающая способность.				Мультимедия	ЛО1,4,5,8,9	Тест
	Локализация гена в группе сцепления с помощью				презентация	ДО2,3	
	метода гибридизации соматических клеток.						
	Анализ политенных и метафазных хромосом.						
	Построение цитологических карт хромосом.						
4	3. Генетический анализ на молекулярном	4	4				
	уровне организации	4	4		Мультимедия	ЛО1, 2, 3,	Контроль-
	Особенности применения, разрешающая				презентация	4, 6, 8	ная работа
	способность и методы. Анализ тонкой структуры					ДО5-7	Зачет
	гена Тест на аллелизм. Внутригенное						
	картирование. Метод гибридизации in situ.						
	Молекулярно-генетические маркеры.						
	Картирование на основе данных полиморфизма						
	длин рестрикционных фрагментов. Физические,						
	цитологические и генетические карты.						
	Особенности организации генетического						
	материала про и эукариот.						

ИНФОРМАЦИОННАЯ ЧАСТЬ

Основная и дополнительная литература

N_0N_0	Chinada antonomia	Год
Π/Π	Список литературы	издания
	Основная (ЛО)	
1.	Айала Ф. Современная генетика / Ф. Айала, Дж. Кайгер. М.:Мир. Т.1-3.	1987
2.	Глик Б. Молекулярная биотехнология. Принципы и применение / Б. Глик, Дж. Пастернак. М.: Мир.	2002
3.	<i>Инге-Вечтомов С.Г.</i> Введение в молекулярную генетику / С.Г. Инге-Вечтомов. М., Высшая школа.	1983
4.	Льюин Б. Гены / Б. Льюин. М., Мир.	1987
5.	Орлова Н.Н. Генетический анализ / Н.Н. Орлова. М.	1991
6.	Рыбчин В.Н. Основы генетической инженерии / В.Н. Рыбчин. СПб.	1986
7.	Серебровский А.С. Генетический анализ / А.С. Серебровский. М.: Наука.	1970
8.	Сингер М. Гены и геномы / М. Сингер, П. Берг. М.: Мир.	1998
9.	Тихомирова М. М. Генетический анализ / М. М. Тихомирова. Л.	1990
10.	Φ адеева $T.C.$ Сравнительная генетика растений / Т.С. Фадеева, С.П. Соснихина, Н.М. Иркаева. Л.: Изд- во ЛГУ.	1980
	Дополнительная (ЛД)	
1.	Введение в молекулярную диагностику и генотерапию наследственных заболеваний. СПб.: Специальная литература.	1997
2.	Методы генетики соматических клеток / Под ред Дж. Шея. М.	1985
3.	Методы культивирования клеток / Под. ред. Г. П. Пинаева. М.	1988
4.	Молекулярная клиническая диагностика. Методы / Под ред. С. Херрингтона и Дж. Макги. М.: Мир.	1999
5.	Dale J. W. From genes to genomes: concepts and applications of DNA technology / J.W. Dale, von M. Schantz John Willey & Sons.	2002
6.	Ling M.M. Approaches to DNA Mutagenesis: Overview// Analytical biochemistry / M.M. Ling, Robinson B.H V254	1997
7.	Primrose S. Principles of gene manipulation / S. Primrose, R. Twyman, R. Old. Blackwell Science.	2002
8.	Коничев $A.С.$, C евастьянова $\Gamma.A.$ Биохимия и молекулярная биология. Словарь терминов	2008
9.	Остерман Л.А. Методы исследования белков и нуклеиновых кислот: Электрофорез и ультрацентрифугирование	1981
10.	$Oстерман \ Л.А.$ Исследование биологических макромолекул изоэлектрофокусированием, иммуноэлектрофорезом и радиоизотопными методами	1983
11.	Остерман Л.А. Хроматографические методы исследования	1985
12.	Сенчук В.В. Биохимия: курс лекций. В 2 ч. Ч. 1. Биомолекулы	2005
13.	Спирин Л.С. Молекулярная биология. Структура рибосом и биосинтез белка	1986
14.	Цыганов А.Р., Сучкова И.В., Ковалева И.В. Биохимия	2007
15.	Элиот В., Элиот Д. Биохимия и молекулярная биология	2002

ПЕРЕЧЕНЬ ЛАБОРАТОРНЫХ ЗАНЯТИЙ

(2 ч. каждое)

- 1. Типы взаимодействия генов. Анализ ди и полигибридных скрещиваний. Наследование признаков, сцепленных с полом. Анализ наследования признаков при моно-и полигенном контроле. Статистическая проверка выдвигаемых гипотез.
- **2.** Анализ совместного наследования признаков. Группы сцепления и расчет межгенных расстояний. Основы генетического картирования. Трехфакторное скрещивание у высших эукариот.
- **3.** Картирование генов и хромосом. Построение генетических карт у низших эукариот. Тетрадный аниализ.
- 4. Анализ генных мутаций. Рестрикционное картирование.
- 5. Анализ геномных мутаций. Генетическая структура популяций.

УПРАВЛЯЕМАЯ САМОСТОЯТЕЛЬНАЯ РАБОТА

(темы)

- 1. Гибридологический метод анализа.
- 2. Молекулярно-биологические методы анализа.

МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПО ОРГАНИЗАЦИИ САМОСТОЯТЕЛЬНОЙ РАБОТЫ СТУДЕНТОВ

Для организации самостоятельной работы студентов по учебной курсу следует использовать современные информационные дисциплине технологии: разместить в сетевом доступе комплекс учебных и учебнометодических материалов (программа, курс лекций, мультимедийные презентации, методические указания к лабораторным занятиям, список рекомендуемой литературы и информационных ресурсов, задания в тестовой форме для самоконтроля и др.).

Эффективность самостоятельной работы студентов целесообразно проверять в ходе текущего и итогового контроля знаний. Для общей оценки качества усвоения студентами учебного материала рекомендуется использование рейтинговой системы.

ПЕРЕЧЕНЬ РЕКОМЕНДУЕМЫХ СРЕДСТВ ДИАГНОСТИКИ

Учебным планом специальности 1-31 01 01 Биология специализаций 1-31 01 01-01 07 и 1-31 01 01-02 07 Генетика в качестве формы итогового контроля по учебной дисциплине рекомендован экзамен. Для текущего контроля качества усвоения знаний студентами можно использовать следующий диагностический инструментарий:

- защита индивидуальных заданий при выполнении лабораторных работ;
- компьютерное тестирование;
- письменные контрольные работы по отдельным темам курса.

СТРУКТУРА РЕЙТИНГОВОЙ ОЦЕНКИ ЗНАНИЙ

ИТОГОВАЯ ОЦЕНКА:

Определяется по формуле (минимум 4, максимум 10 баллов):

Итоговая оценка = $P \times 0.4 + 9 \times 0.6$

где P — рейтинговая оценка, \mathbf{b} — экзаменационный балл

	Компонент	Форма	Шкала	Весовой
I	ейтинговой системы	оценки знаний	оценки	коэффициент
P	Эффективность работы на лабораторных занятиях	Контрольные задания, включающее решение ситуационных задач	По десятибалльной шкале	0,1
	Контроль самостоятельной работы, тема I	Решение ситуационных задач	По десятибалльной шкале	0,45
	Контроль самостоятельной работы, тема II	Решение ситуационных задач	По десятибалльной шкале	0,45
	Посещение занятий			0,1
Э	Экзамен: устный ответ	Вопрос	По десятибалльной шкале	0,3
	по билету, содержащему два	Вопрос	По десятибалльной шкале	0,3
	теоретических вопроса и задачу	Задача	По десятибалльной шкале	0,4

Итоговая оценка выставляется только в случае успешной сдачи экзамена (4 балла и выше)

ПРОТОКОЛ СОГЛАСОВАНИЯ УЧЕБНОЙ ПРОГРАММЫ ПО ИЗУЧАЕМОЙ УЧЕБНОЙ ДИСЦИПЛИНЕ С ДРУГИМИ ДИСЦИПЛИНАМИ СПЕЦИАЛЬНОСТИ

Название	Название	Предложения	Решение, принятое
дисциплины,	кафедры	об изменениях в	кафедрой,
с которой		содержании учебной	разработавшей
требуется		программы	учебную программу (с
согласование		по изучаемой учебной	указанием даты и номера протокола) ¹
1		дисциплине	номера протокола)
1.			

ДОПОЛНЕНИЯ И ИЗМЕНЕНИЯ К УЧЕБНОЙ ПРОГРАММЕ ПО ИЗУЧАЕМОЙ УЧЕБНОЙ ДИСЦИПЛИНЕ на ____/____ учебный год №№ Дополнения и изменения Основание Учебная программа пересмотрена и одобрена на заседании кафедры (протокол № ____ от _____ 201_ г.) Заведующий кафедрой _____ (степень, звание) (подпись) (И.О.Фамилия)

(подпись)

(И.О.Фамилия)

УТВЕРЖДАЮ Декан факультета

(степень, звание)

 $^{^{1}}$ При наличии предложений об изменениях в содержании учебной программы по изучаемой учебной дисциплине