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Abstract

The present work discusses robust multivariate methods specifically designed
for high dimensions. Their implementation in R is presented and their appli-
cation is illustrated on examples. The first group of classes are algorithms for
outlier detection, already introduced elsewhere and implemented in other pack-
ages. The value added of the new package is that all methods follow the same
pattern and thus can use the same graphical and diagnostic tools. The next topic
covered is sparse principal components including an object oriented interface to
the standard method proposed by Zou et al [14] and the robust one proposed by
Croux et al [2]. Robust partial least squares (Hubert and Vanden Branden [6])
as well as partial least squares for discriminant analysis conclude the scope of
the new package.

1 Introduction

High-dimensional data are typical in many contemporary applications in scientific areas
like genetics, spectral analysis, data mining, image processing, etc. and introduce new
challenges to the traditional analytical methods. First of all, the computational effort
for the anyway computationally intensive robust algorithms increases with increasing
number of observations n and number of variables p towards the limits of feasibility.
Some of the robust multivariate methods available in R (see Todorov and Filzmoser
[11]) are known to deteriorate rapidly when the dimensionality of data increases and
others are not applicable at all when p is larger than n.

The present work discusses robust multivariate methods specifically designed for
high dimensions. Their implementation in R is presented and their application is
illustrated on examples. A key feature of this extension of the framework is the object
model which follows the one already introduced by rrcov and based on statistical
design patterns. The first group of classes are algorithms for outlier detection, already
introduced elsewhere and implemented in other packages. The value added of the new
package is that all methods follow the same pattern and thus can use the same graphical
and diagnostic tools. The next topic covered is sparse principal components including
an object oriented interface to the standard method proposed by Zou et al [14] and
the robust one proposed by Croux et al [2]. These are presented and illustrated in
Section 2. Robust partial least squares ([6], [10]) as well as partial least squares for
discriminant analysis are presented in Section 3. Section 4 concludes.
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2 Robust sparse Principal Component Analysis

Principal component analysis (PCA) is a widely used technique for dimension reduction
achieved by finding a smaller number q of linear combinations of the originally observed
p variables and retaining most of the variability of the data. It is important to be able to
interpret these new variables, referred to as principal components, especially when the
original variables have physical meaning. The link between the original variables and
the principal components is given by the so called loadings matrix used for transforming
the data and thus it should serve as a means for interpreting the PCs. Dimension
reduction by PCA is mainly used for: (i) visualization of multivariate data by scatter
plots (in a lower dimensional space); (ii) transformation of highly correlated variables
into a smaller set of uncorrelated variables which can be used by other methods (e.g.
multiple or multivariate regression); (iii) combination of several variables characterizing
a given process into a single or a few characteristic variables or indicators.

The classical approach to PCA measures the variability through the empirical vari-
ance and is essentially based on computation of eigenvalues and eigenvectors of the
sample covariance or correlation matrix. Therefore the results may be extremely sensi-
tive to the presence of even a few atypical observations in the data. The outliers could
artificially increase the variance in an otherwise uninformative direction and this direc-
tion will be determined as a PC direction. These discrepancies will carry over to any
subsequent analysis and to any graphical display related to the principal components
such as the biplot.

PCA was probably the first multivariate technique subjected to robustification,
either by simply computing the eigenvalues and eigenvectors of a robust estimate of
the covariance matrix or directly by estimating each principal component in a robust
manner. Different approaches to robust PCA are discussed in many review papers,
see for example [11] and [5], and examples are given how these robust analyses can
be carried out in R. Details about the methods and algorithms can be found in the
corresponding references. However, PCA usually tends to provide PCs which are linear
combinations of all the original variables (by giving them non-zero loadings). Regarding
the interpretability of the results it would be very helpful to reduce not only the
dimensionality but also the number of used variables (ideally to relate each PC to
only a few variables). It is not surprising that vast research effort was devoted to this
issue and various proposals have been introduced in the literature. A straightforward
informal method is to set to zeros those PC loadings which have absolute values below
a given threshold (simple thresholding). Jolliffe et al [9] proposed SCoTLASS which
applies a lasso penalty on the loadings in a PCA optimization problem, and recently
Zou et al [14] reformulated PCA as a regression problem and used the elastic net to
obtain a sparse version - SPCA.

Despite of being more or less successful in achieving sparsity, all these methods
suffer a common drawback - all are based on the classical approach to PCA which
measures the variability through the empirical variance, and is essentially based on
computation of eigenvalues and eigenvectors of the sample covariance or correlation
matrix. Therefore the results may be very sensitive to the presence of even a few
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atypical observations in the data. The outliers could artificially increase the variance
in an otherwise uninformative direction and this direction will be determined as a PC
direction. To cope with the possible presence of outliers in the data, recently Croux
et al [2] proposed a method which is sparse and robust at the same time. It utilizes the
projection pursuit approach where the PCs are extracted from the data by searching
the directions that maximize a robust measure of variance of data projected on it. An
efficient computational algorithm was proposed by Croux et al [1].

Example We will use a real data example to illustrate the standard and robust
sparse methods—the low-dimensional cars data set, which is available in the pack-
age rrcovHD as the data frame cars. For n = 111 cars, p = 11 characteristics were
measured, including the length, width, and height of the car. After looking at pair-
wise scatterplots of the variables, and computing pairwise Spearman rank correlations
ρ(Xi, Xj) we see that there are high correlations among the variables, for example,
ρ(X1, X2) = .83 and ρ(X3, X9) = .87. We conclude that PCA could be an appropriate
method for finding the most important sources of variation in this data set (see also
Hubert et al [8]). The first four classical PCs explain more than 96% of the total vari-
ance and the first four robust PCs explain more than 95%, therefore we decide to retain
four components in both cases. Next we need to choose the degree of sparseness which
is controlled by the regularization parameter λ. Since the sparse PCs have to provide
a good trade-off between sparseness and achieved percentage of explained variance we
can proceed similarly as in the selection of the number of principal components with
the scree plot - we compute the sparse PCA for many different values of λ and plot
the percent of explained variance against λ. We choose λ = 0.78 for classical PCA
and λ = 2.27 for robust PCA, thus attaining 83 and 82 percent of explained variance,
respectively, which is only an acceptable reduction compared to the non-sparse PCA.
Retaining k = 4 principal components as above and using the selected parameters λ,
we can construct the so called diagnostic plots which are especially useful for identi-
fying outlying observations. The diagnostic plot is based on the score distances and
orthogonal distances computed for each observation.

The diagnostic plot shows the orthogonal distances versus the score distance, and
indicates with a horizontal and vertical line the cut-off values that allow to distin-
guish regular observations (those with small score and small orthogonal distance) from
the different types of outliers: bad leverage points with large score and large orthogo-
nal distance, good leverage points with large score and small orthogonal distance and
orthogonal outliers with small score and large orthogonal distance (for detailed de-
scription see [8]). In Figure 1 the classical and robust diagnostic plot as well as their
sparse alternatives are presented. The diagnostic plots for the standard PCA reveals
only several orthogonal outliers and identifies two observations as bad leverage points.
Three more observations are identified as bad leverage points by the sparse standard
PCA which is already an improvement, but only the robust methods identify a large
cluster of outliers. These outliers are masked by the non-robust score and orthogonal
distances and cannot be identified by the classical methods. It is important to note
that the sparsity feature added to the robust PCA did not influence its ability to detect
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properly the outliers.
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Figure 1: Distance-distance plots for standard and sparse PCA and their robust ver-
sions for the cars data.

3 Robust linear regression and classification in high

dimensions

Regression problems become challenging when the number of explanatory variables p
exceeds the number of observations n. The standard tool to use in these situations is
partial least squares regression (PLS). PLS was developed by [13] in the 1960s in the
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context of econometric path modeling but some twenty years later it was successfully
adopted for regression problems in chemometrics and spectroscopy. It performs a di-
mensionality reduction to the original regressor variables X by searching for directions
w. The objective is to maximize the covariance between the scores Xw and a linear
projection of the responses Y . This ensures that the newly derived regressor variables
contain relevant information for the prediction of the responses. There are different
models and estimators for the PLS regression problem. The idea of PLS regression is
a decomposition of the predictor matrix X and the response matrix Y :

X = TP� + EX (1)

Y = TQ� + EY (2)

where T = XW ∈ R
n×K is a score matrix, and W = (w1, . . . ,wK) ∈ R

p×K is a matrix
of direction (loading) vectors. The equations (1) and (2) can be regarded as ordinary
least squares problems, so P ∈ R

p×K and Q ∈ R
q×K are matrices of coefficients,

whereas EX ∈ R
n×p and EY ∈ R

n×q are matrices of random errors. Again, K denotes
the number of components, with K ≤ min{n, p, q}.

If we rewrite equation (2),

Y = TQ� + EY = XWQ� + EY , (3)

we see that WQ� ∈ R
p×q is a matrix of coefficients that relates Y to the original data

X according to the original model:

Y = XB + E, (4)

where the response variable is an n× q matrix Y of univariate responses. Accordingly,
the matrix of regression coefficients B is of dimension p × q, and the error matrix E
has the same dimension as Y .

In order to successively find direction vectors w that maximize the covariance be-
tween the explanatory variables and the responses, the SIMPLS criterion of [3] is used.
The first normalized weight vectors r1 and q1 are obtained as linear combinations of
X and Y that maximize

cov(Xr1; Y q1). (5)

The solution of this maximization problem is found by taking r1 and q1 as the
first left and right singular eigenvectors of Sxy = XT Y /(n − 1), the cross-covariance
matrix of the explanatory variables and response variables. For each observation the
first coordinate of the score ti1 is computed as ti1 = xir1. The other weight vectors ra

and qa for a = 2, . . . , K are obtained by imposing an orthogonality constraint to the
elements of the scores.

In general, the weight vectors ra and qa are obtained as the left and right singular
vector of Sa

xy where Sa
xy is the deflated covariance matrix:

Sa
xy = Sa−1

xy − P [a−1](P
T
[a−1]P [a−1])

−1P T
[a−1]S

a−1
xy (6)
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Finally, when the scores are K-dimensional, multivariate linear regression is performed
of the responses yi on these scores ti:

Bp×q = Rp×K(T T
K×nT n×K)−1T T

K×nY n×q (7)

B0 = ȳ −BT
q×px̄,

where Rp×K = [r1, . . . , rK ].
A robust alternative to PLS was proposed by Hubert and Vanden Branden [6]. It

modifies the SIMPLS algorithm in only two steps. First, robust estimates of Sxy and
Sx will be obtained by using robust PCA in order to compute a robust covariance
matrix in high dimensions. Then a robust multivariate regression method is performed
in the second stage. Another approach to robust PLS is the method called partial
robust M (PRM) regression [10]. The main idea is to use an M estimator for regression
not on the complete but only for a partial information of the explanatory variables.
This partial information is obtained via latent variables that need to be extracted in a
robust manner (see also [4]).

Classification in high dimensions The prediction of group membership and/or
describing group separation on the basis of a data set with known group labels (train-
ing data set) is a common task in many applications and linear discriminant analysis
(LDA) has often been shown to perform best in such classification problems. How-
ever, very often the data are characterized by far more variables than objects and/or
the variables are highly correlated which renders LDA (and the other similar standard
methods) unusable due to their numerical limitations. Let us assume that Y is uni-
variate and categorical, i.e. ∀1 ≤ i ≤ n : yi ∈ {1, . . . , G} where G is the number of
groups. For high dimensional data sets, classical linear discriminant analysis cannot
be performed due to the singularity of the estimated covariance matrix Σ̂, as it re-
quires the inverse of Σ̂. To overcome the high dimensionality problem in classification
context one can reduce the dimensionality by either selecting a subset of ”interesting“
variables (variable selection) or construct K new components, K � p which repre-
sent the original data with minimal loss of information (feature extraction, dimension
reduction). Many methods for dimension reduction were considered in the literature
but the two most popular are principal component analysis (PCA) and partial least
squares (PLS). It is intuitively clear that a supervised method (which uses the group
information while constructing the new components) like PLS should be preferred to
unsupervised methods like PCA.

PLS was not originally designed to be used in the context of statistical discrimina-
tion but nevertheless was routinely applied with evident success by practitioners for
this purpose. Taking into account the grouping variable(s) when decomposing the data
one would intuitively expect an improved performance for group separation. Since the
response variable in case of a classification problem is a categorical variable, none of
the robust PLS methods proposed above can be used. Therefore, in order to obtain a
robust PLS-DA we proposed to apply any of the outlier detection methods described
in Filzmoser and Todorov [5], which are implemented in package rrcovHD, and then
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use classical PLS on the already cleaned data set. Hubert and Van Driessen [7] used a

Classical PLSDA: k= 6

Data: Fruit − Hubert and Van Driessen (2004)
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Robust PLSDA: k= 6
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Figure 2: Prediction histograms for class D for the fruit data using classical and
robust PLS-DA.

data set containing the spectra of three different cultivars of the same fruit. The three
cultivars (groups) are named D, M and HA, and their sample sizes are 490, 106 and
500 observations, respectively. The spectra are measured at 256 wavelengths. The fruit
data is thus a high-dimensional data set which was used to illustrate a new approach
for robust linear discriminant analysis, and it was studied again by Vanden Branden
and Hubert [12]. From these studies it is known that the first two cultivars D and
M are relatively homogenous and do not contain atypical observations, but the third
group HA contains a subgroup of 180 observations which were obtained with a different
illumination system. In Figure 2 are shown the prediction histograms for class D for
the fruit data using classical and robust PLS-DA.

4 Summary and conclusions

An object oriented framework for robust multivariate analysis developed in the S4 class
system of the programming environment R already exists implemented in the package
rrcov and is described in [11]. The main goal of this framework is to support the usage,
experimentation, development and testing of robust multivariate methods as well as
simplifying comparisons with related methods. In this article we investigated several
robust multivariate methods specifically designed for high dimensions. All considered
methods and data sets are available in the R package rrcovHD. A key feature of this
extension of the framework is that the object model follows the one already introduced
by rrcov which is based on statistical design patterns.
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