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Abstract

We discuss the analysis of count time series following generalized linear models
in the presence of outliers and intervention effects. Different modifications of such
models are formulated which allow to incorporate, detect and to a certain degree
distinguish extraordinary events (interventions) of different types in count time
series retrospectively. An outlook on future extensions to the problem of online
surveillance and robust parameter estimation is provided.

1 Introduction

Time series of counts are measured in various disciplines whenever a number of events
is counted during certain time periods. Examples are the monthly number of car
accidents in a region, the weekly number of new cases in epidemiology, the number of
transactions at a stock market per minute in finance, or the number of photon arrivals
per microsecond in a biological experiment. A natural modification of the popular
autoregressive moving average (ARMA) models for continuous variables is based on
the assumption that the observation Yt at time t is generated by a generalized linear
model (GLM) conditionally on the past, choosing an adequate distribution for count
data like the Poisson and a link function η(·). This approach of time series following
a GLM is pursued e.g. by Kedem and Fokianos (2002). Restricting ourselves to first
order models, we consider time series (Yt : t ∈ N0) following a Poisson model

Yt|FY
t−1 ∼ Pois(λt), (1)

η(λt) = β0 + β1η(Yt−1 + c) + α1η(λt−1), t ≥ 1,

where FY
t−1 stands for the σ-algebra created by {Yt−1, . . . , Y0, λ0}, while β0, β1, α1 are

unknown parameters, and c is a known constant. Models employing other distributions
like the negative binomial could be treated similarly.

The natural choice for η is the logarithm, and this is the reason for adding the
constant c to Yt−1 in the term η(Yt−1 + c), since we need to avoid difficulties arising
from observations which are equal to 0. Following Fokianos and Tjøstheim (2011),
who develop ergodicity conditions for a subclass of the arising log–linear models, we
set c = 1. Another choice for η which has received some attention is the identity,
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η = id, see e.g. Ferland, Latour and Oraichi (2006). In this case we can set c to 0. For
ergodicity conditions for this model class see Fokianos, Rahbek and Tjøstheim (2009).

We briefly discuss possible interpretations of models like those given in (1) in the
context of epidemiology, with Yt denoting the number of new cases observed at time
t. For a fixed population size, the conditional mean λt measures the risk of a person
to fall ill at time t then. Our model assumes that all effects on λt are linear after
transformation to a suitable scale by η. The term η(Yt−1 + c) in the second equation
models the dependence of the transformed conditional mean η(λt) and thus of the
observation Yt on the previous value Yt−1, with β1 measuring the strength of this
dependence. A large number of cases Yt−1 at time t − 1 can cause a large number of
cases Yt at time t because the risk of infection increases. The term η(λt−1) additionally
describes that there can be periods of increased risk also because of certain weather
conditions or expositions, for instance, and α1 measures the size of such dependencies.

Given a model as formulated in (1), a basic question is whether it properly describes
all the observations of a given time series, or whether some observations have been
influenced by extraordinary effects, which are called interventions in what follows.
Outlier and intervention analysis for ARMA processes of continuous variables has been
developed by Fox (1972), Box and Tiao (1975), Tsay (1986), Chang, Tiao and Chen
(1988) and Chen and Liu (1993), among others. However, counts are positive and
typically right-skewed, causing a need for especially designed models and procedures.

In the following sections, we review the intervention models proposed by Fokianos
and Fried (2010, 2012) for time series which are Poisson conditionally on the past, with
η being the identity and the log-link, respectively, and describe some extensions.

2 Models for Intervention Analysis

A possibility to introduce an extraordinary effect on a time series (Yt) generated by (1)
is the assumption that from a time point τ on the underlying conditional mean process
is changed by adding terms ωδt−τI(t ≥ τ) to η(λt), so that instead of (Yt) we observe
a contaminated process (Zt) generated from a model with contamination,

Zt|FZ
t−1 ∼ Pois(λct), (2)

η(λct) = β0 + β1η(Zt−1 + c) + α1η(λ
c
t−1) + ωδt−τI(t ≥ τ), t ≥ 1.

In obvious notation, (λct) is the contaminated process of conditional means, which
coincides with (λt) until time τ − 1 and then becomes affected, while FZ

t−1 denotes the
σ-algebra representing the information on the past of the contaminated process and
the initial values, analogous to FY

t−1. The new parameter ω determines the size of the
effect, I(t ≥ τ) indicates whether t ≥ τ or not, and δ ∈ [0, 1] determines whether the
effect is concentrated on time τ (in case of δ = 0), causing a spiky outlier, whether
the whole level is shifted from time τ on (δ = 1), or whether a geometrically decaying
transient shift with rate δ ∈ (0, 1) occurs. Note that even in case of δ = 0 the whole
future of the process is affected by an intervention, since its effect enters the dynamics
both via Zt and η(λ

c
t), t ≥ τ . Continuing the explanations given above in the context
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of epidemiology, an intervention according to (2) can be interpreted as an internal
change of the data generating process. For some reason, the conditional mean of the
process (the risk) changes in an unpredictable manner at time τ , and this changes the
observation for that time point, and also the observations thereafter.

Liboschik et al. (2013) explore another intervention model in case of the identity
link. In their approach, an intervention affects the observation at time τ , but not
the underlying conditional mean. This can be understood as an external change, as
the contaminated observation Zτ equals the sum of the uncontaminated value Yτ plus
a random number Cτ , which arises because of extraordinary reasons and enters the
dynamics of the process in the same way as Yτ , while the underlying risk λτ initially is
not affected. An example might be people being infected due to external reasons, e.g.
on a journey. The modified intervention model with a general link function η reads

Zt|FZ
t−1 ∼ Pois(λct), (3)

η(λct) = η(λt) + ωδt−τI(t ≥ τ),

η(λt) = β0 + β1η(Zt−1 + c) + α1η(λt−1), t ≥ 1.

The last two equations describing the conditional mean process can be summarized as

η(λct) = β0 + β1η(Zt−1 + c) + α1

(
η(λct−1)− ωδt−1−τI(t− 1 ≥ τ)

)
+ ωδt−τI(t ≥ τ) .

This shows the difference to model (2) more clearly.
If the time point τ and the type of an intervention, i.e. the value of δ, both are

known, an intervention model as formulated in (2) or (3) can be fitted by maximizing
the conditional likelihood iteratively, starting from suitable initial values. The existence
of such a known intervention can be confirmed by comparing the test statistics of the
corresponding score test to the upper percentiles of its asymptotical χ2

1-distribution, as
described in the papers mentioned above. If only the time point τ is unknown, but the
type is known, simulation experiments indicate that parametric bootstrap procedures
work rather well: fit the model without intervention effects and calculate the score
test statistics for all time points. Use the maximum of all score test statistics for
all time points as the final test statistic. Then generate artificial time series without
interventions from the fitted model and calculate the corresponding maximum score
test statistic as well. Opt for an intervention at that time point which maximizes
the score test statistic for the real data, if it is among the largest 100α-percent of all
maximum score test statistics. If the type of the intervention is unknown as well, the
maximum score test statistics can be calculated for each type given either model (2)
or (3). The simulations suggest that preference should be given to level shifts (δ = 1)
if they turn out to be significant, since a level shift usually causes the test statistics
for the other types of intervention effects also to become large, while the reverse effect
is much less pronounced. Multiple interventions can be dealt with by estimating the
effect of a detected intervention and subtracting it from the time series, before the
cleaned data are analyzed with respect to further interventions.

Note that the above intervention models are not able to describe so called additive
outliers representing e.g. pure measurement or reporting errors, i.e. the case where a
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single observation is changed without any effects on the future of the process. Actually,
such additive outliers are difficult to deal with by a frequentist approach, since we would
need to condition on the unobserved value Yτ instead of the contaminated Zτ . Fried et
al. (2012) develop a Bayesian approach for additive outliers, applying Markov Chain
Monte Carlo techniques. Their simulation results provide evidence that in this way it
is possible to deal with additive outliers if there are several of them. A single or very
few additive outliers pose difficulties to a Bayesian approach based on little informative
prior distributions, since they do not provide enough information on that component
of the underlying mixture distribution which causes the outliers.

Furthermore it should be noted that we implicitly assume intervention effects to
be additive when using the identity link, and multiplicative on the original scale when
using the log-link, since for simplicity we introduce the intervention effects in the same
way as the dependencies on the past. Another assumption underlying the intervention
models formulated above, and also the common outlier and intervention models which
have been proposed for ARMA processes in the literature, is that the dynamics of the
process does not change and follows the same model after an intervention as before it.

For an illustration we analyze an artificial time series of length n = 200 generated
from model (2) with η = id, β0 = 3, β1 = 0.4, α1 = 0.3, an internal level shift of size
ω1 = 4 at time τ1 = 100 and an internal spike of size ω2 = 30 at time τ2 = 150.
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1. spiky outlier with ω̂ = 21.71
(p−value: 0.0040)

2. level shift with ω̂ = 4.46
(p−value: 0.0140)

External intervention model (3)
β̂0 = 3.83, β̂1 = 0.35, α̂1 = 0.26

Time t

Figure 1: Results obtained from fitting both intervention models to a time series with
an internal level shift at time 100 and an internal spike at time 150.

The results obtained from fitting both intervention models to these data are illus-
trated in Figure 1. The spike and the level shift are detected when using either of these
two models, albeit with some differences between the estimated parameter values and
outlier sizes, according to the different influences of such patterns on the time series.
These findings confirm those of Liboschik et al. (2013): interventions can be detected
successfully even if the wrong model is used. This is good news and also bad news: it
is good news since it implies a certain robustness against model misspecification, but it
makes a statement about the cause of an intervention effect and about its mechanism
(internal / external) difficult. More work on model selection is needed for this.
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3 Extensions and Outlook

3.1 Surveillance

The methods for detection of intervention effects in count time series mentioned above
work retrospectively, i.e., we observe the whole time series before it is analyzed. An
open problem so far is how these models can be used for surveillance, i.e. online
detection of changes. This is an interesting problem not only in epidemiology, where we
want to detect the outbreak of an epidemic with only short time delays. An intuitive
approach is to compare an incoming observation yn+1 to its 1-step prediction λ̂n+1,
obtained by estimating the parameters of model (1) from the data observed until time
point n, plugging in these estimates into the formula for η(λn+1) and applying the
inverse transform η−1. There is evidence of an extraordinary effect if yn+1 is larger
than the upper, say, 99% percentile of a Poisson distribution with parameter λ̂n+1.

An analysis of a single observation cannot tell us which type of intervention occurs,
e.g. whether there is a spiky outlier or a level shift. For this we need to wait some
more time points until further values yn+2, yn+3, . . . , yn+m are observed, with a suitably
chosen delay m ∈ N. Instead of its 1-step ahead prediction, a comparison of yn+h to its
h-step ahead prediction might be advantageous then, since the 1-step ahead prediction
will strongly be affected by a level shift at time n+1 due to its use of yn+1, . . . , yn+h−1.
To the best of our knowledge, so far there are no simple formulae available for the
conditional expectation of Yn+h given FY

n if h ≥ 2, which is the natural candidate
for h-step ahead prediction, so that we would need to rely on simulating the future
given the fitted model, or use simple linear predictions instead, sticking the previous
predictions ŷt+h−1 = λ̂t+h−1 into the formula for η(λ̂t+h) for h = 2, 3, . . . ,m. However,
note that the conditional distribution of Yn+h given FY

n is not Poisson for h ≥ 2, so
that there is need for more research on these models.

3.2 Robust estimation

Further open questions remain concerning the robust estimation of the model param-
eters in the presence of outliers and intervention effects. This is even more important
because it is difficult to specify intervention effects correctly and because of the diffi-
culties in dealing with a single or a few additive outliers outlined above.

M-estimators are a popular generalization of (conditional) maximum likelihood es-
timators which provide some robustness against outliers by replacing the log-likelihood
or the score function by more robust alternatives. An M-estimator of a parameter θ
can be defined as the solution of a score equation

n∑
t=1

ψ(yt, θ̂) = 0 . (4)

Maximum likelihood estimation is derived by choosing ψ(y, θ) as the derivative of the
log-density ln fθ(y) with respect to θ, i.e. as the usual score function, while ψ(y, θ) =
y− θ corresponds to least squares and ψ(y, θ) = sign(y− θ) to least absolute deviation
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estimation of location. The popular Huber M-estimator of the location parameter θ in
a location-scale model with known (or preliminarily estimated) scale σ is derived from

ψ(y, θ) =
y − θ

σ
I(−kσ ≤ y − θ ≤ kσ) + k sign(y − θ)I(|y − θ| > kσ),

where k is a tuning constant which determines the efficiency and the robustness of the
resulting estimator. For k = 0 we get least absolute deviations and for k → ∞ we
get least squares. The score function of the Huber M-estimator is monotone. This
guarantees a unique solution which can easily be determined iteratively starting from
any initial value. The score function of the Tukey M-estimator,

ψ(y, θ) =
y − θ

σ

(
k2 − (y − θ)2

σ2

)2

I(−kσ ≤ y − θ ≤ kσ),

however, is redescending to 0 as y − θ approaches ±kσ. This leads to the possibility
of multiple solutions of the defining score equations (4).

M-estimation of generalized linear models using the Huber ψ-function has been
treated by Cantoni and Ronchetti (2001). However, in our basic model (1) we regress
on previous observations and previous conditional means, and it is well known that
monotone M-estimators like the Hubers need further modifications to become robust
against outlying regressors. Cantoni and Ronchetti (2001) consider covariates follow-
ing an elliptical distribution and use weights based on robustly estimated Mahalanobis
distances to downweight observations with outlying regressors. This approach is not
natural in our context, since we regress on previous observations, which are condition-
ally Poisson, or some transformation of them. Empirical work on model (2) with the
log-link and α1 = 0, that is a model without feedback, indicates that in the cases of level
shift and transient shift there are no significant differences between the classical maxi-
mum likelihood estimation and the approach based by Cantoni and Ronchetti (2001).
This agrees with findings for Gaussian ARMA models, that maximum likelihood and
least squares work rather well in case of outliers which conform to the dynamics of
the process. In the case of additive outliers, the weighted approach through robust
Mahalanobis distances was found to perform much better than the classical maximum
likelihood estimation, especially as the number of outliers increases. In fact, some
further empirical work on the feedback case (α1 �= 0) indicates that the Cantoni and
Ronchetti (2001) estimation approach performs better with weights.

Maronna, Martin and Yohai (2006) recommend Tukey’s ψ-function since its re-
descending behavior completely eliminates the influence of huge outliers and provides
some robustness even in the case of outlying regressors. However, we need to use
highly robust initial parameter estimates then, in order not to get trapped in a wrong
solution when trying to solve (1) iteratively. This and the discreteness and strong
asymmetries of Poisson models pose further problems which are not encountered in or-
dinary symmetric location-scale models. This will briefly be illustrated in the context
of independent Poisson data in the following.

Cadigan and Chen (2001) investigate a modification of the Huber score function
for the Poisson distribution. Under Poisson assumptions, the variance σ2 equals the
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Figure 2: Asymptotical efficiencies of the Huber and the Tukey M-estimator with
different tuning constants k for different values of the mean θ.

mean θ, so that we can replace σ by
√
θ in the above score functions, see also Elsaied

(2012). Furthermore, the expectation of ψ(Y, θ) has to be zero for getting asymptot-
ically unbiased estimates. This can be accomplished by introducing a bias correction
a and replacing (y − θ)/σ by (y − θ)/

√
θ − a in the above formulae. Given the need

for a highly robust initial estimate when using the Tukey ψ-function, we might want
to apply the median of the data, but this only works if it is not zero because of our

scaling by
√
θ̂, and it provides only a very rough estimate if the sample median is

small. Elsaied (2012) proposes an adaptive estimate instead, combining the sample
median with an estimate derived from the frequency of zero observations.

The asymptotical distribution of an M-estimator under suitable regularity condi-
tions is N(θ, Vψ(θ)), with the asymptotical variance Vψ(θ) = E(ψ(Y, θ)/Bθ)

2, where
Bθ = ∂Eψ(Y, θ)/∂θ, see e.g. Maronna, Martin and Yohai (2006). The relative effi-
ciency of an M-estimator as compared to the maximum likelihood estimator, which is
the sample mean, under these conditions thus becomes θ/Vψ(θ), and is illustrated in
Figure 2. Note that an estimator with a fixed tuning constant k does not achieve a
desirable high level of efficiency for all possible values of θ. For further investigations
in this respect and a first attempt to formulate robust M-estimators for model (1) with
p = 1, q ∈ {0, 1} and the identity link see Elsaied (2012).
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