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ABSTRACT: 
In this paper we develop a general framework for market risk optimization. The model is valid for any given 
risk measure (e.g. deviation, Value-at-Risk, Conditional Value-at-Risk...). Our empirical procedure is focused 
on VaR. The reason for choosing this particular risk measure is the complexity of the risk-return optimization 
problems that it generates (non-convex and non-differential). We solve the problem using a multiobjective 
genetic algorithm (GA). The algorithm is very efficient and it can handle hundreds of assets in reasonable 
computer time. One of the advantages of this approach is that it is easily extendable. We could 
simultaneously introduce cardinality constrains, non-linear, non-differentiable transaction cost structures, 
buy-in thresholds or round lots, all of them constraints that lead to non-convex, non-differential models or 
consider another risk measure without needing to modify the GA. 
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1. INTRODUCTION 

In Markowitz (1952) risk is defined in terms of the possible variation of expected portfolio returns. 
Traditionally it has been assumed that the portfolio return is normally-distributed. Under this assumption, two 
statistical measures, mean and standard deviation, can be used to balance return and risk. The optimal portfolio is 
selected from the efficient frontier that is the set of Pareto optimal portfolios with two conflicting criteria: mean 
and variance. However, it is known that the distributions of many financial return series are non-normal, with 
skewness and kurtosis pervasive (Tsay, 2002). Moreover, the use of standard deviation as an appropriate 
measure for risk implies that investors weigh the probability of negative returns equally against positive returns. 
This has motivated that many authors use alternative risk measures or include additional higher-order moments 
to solve the portfolio selection problem (Konno et al., 1993). 

The fact that investors have loss aversion has guided the design of new risk measures. Value-at-Risk 
(VaR) and Conditional VaR (CVaR) are two of these measures. VaR of a portfolio is the lowest amount such 
that the loss will not exceed it with probability 1-α (usually 95% or 99%). CVaR is the conditional expectation of 
losses above the VaR. Currently it is common practice for investment analysts to define portfolio selection risk 
by means of these two measures. 

The minimization of the variance or the CVaR for a given return is a convex, differential problem that can be 
solved using standard methods. For instance, Rockafellar (2000) show that CVaR can be efficiently minimized using 
linear programming and nonsmooth optimization techniques. Andersson et al. (2001) present an approach for 
minimizing CVaR. In this case, CVaR is used for quantifying credit risk of emerging market bonds portfolios. 

On the other hand, when VaR is considered as the risk measure to minimize, it leads to a non-convex and 
non-differential risk-return optimization problem. This problem is tackled in the literature in various ways. Using 
Arzac (1977) framework, Jansen et al. (2000) and Campbell et al (2001) use a safety-first theory approach to 
maximize expected return subject to a VaR constraint. Jansen et al (2000) compute VaR using a semi-parametric 
approach that only models the tail of the distribution parametrically. Gaivoronski (2005) present a method for 
calculating the minimum VaR of a portfolio subject to a specific minimum return by using a smoothing 
algorithm which smooths out the local noisy component of the VaR function. At present, only heuristic methods 
are available to find VaR-optimal portfolios Gilli et al (2006). 
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In order to avoid the use of smoothing techniques, in this paper we propose a genetic algorithm (GA) 
approach to deal with the problem of minimizing VaR or any other measure that leads to non-convex and non-
differential risk-return optimization problems. 

The application of GAs to the portfolio selection problem is not new in the literature. For instance, Yang (2006) 
introduces a GA into a state dependent dynamic portfolio optimization system in order to improve the portfolio 
efficiency over the classical mean-variance method by reducing the estimation risk. Lin (2008) uses GA for portfolio 
selection problems with minimum transaction lots. Ong et al. (2005) provide an application of multiobjective genetic 
algorithm to obtain efficient frontiers to improve the accuracy of the mean-variance approach when a small sample is 
available. Subbu et al. (2005) present an optimization approach in which a multiobjective genetic algorithm is 
combined with linear programming to identify efficient frontiers under multiple risk measures. While the majority of 
the works cited previously solve the mean-variance problem, in this paper the risk measure under consideration is VaR 
computed with historical simulation. We evaluate differences between the subset of efficient portfolios when VaR or 
variance is the risk measure minimized. Finally, a comparison of in-sample and out-sample results and periods under 
different conditions, that is, high and small volatility and bullish and bearish markets is shown.  

Also, we present a multiobjective evolutionary approach that optimizes simultaneously the return and the 
level of risk and evaluates the differences between mean-variance and mean-VaR efficient portfolios. Coello 
(2006) presents a very complete overview of what it is called multiobjective evolutionary optimization, i.e. the 
use of evolutionary algorithms (of which GAs are a sub-class) to solve multiobjective problems. A 
multiobjective optimization problem is a problem which has two or more objectives to optimize simultaneously. 
Usually these objectives are in conflict, that is, improving one of them leads to worsening the others. Therefore, 
most multiobjective optimization problems do not have a single solution but a set of solutions equally optimal. 
These solutions are “trade-offs” among the objectives and form what it is called the Pareto optimal set. By 
definition, a solution is Pareto optimal (or nondominated) “if there exists no other feasible solution which would 
decrease some criterion without causing a simultaneous increase in at least one other criterion”. 

One of the benefits of using GAs for multiobjective optimization is that GAs work with a population of 
individuals, which allows us to find several nondominated solution in a single run. Also, GAs are less 
susceptible than other techniques to the non-convexity of the search space. In this article, we conduct a study on 
multiobjective evolutionary optimization of market risk using VaR to quantify the market risk. The approach is 
very attractive since it is a framework that can be applied to any market risk measure. 

The remainder of this paper is organized as follows: section 2 describes the theory behind the portfolio 
optimization problem. Section 3 explains the basic notions of GAs while section 4 describes how they have been 
applied to the portfolio optimization problem. In section 5 the data used are presented and analyzed. Section 6 
shows the results yielded by the GAs to the optimization problem, and the related conclusions as well as the 
future lines of work are reported in section 7. 

 

2. PORTFOLIO OPTIMIZATION 

The portfolio optimization problem arises from the decisions investors have to make on how to invest 
their available budgets given a set of financial assets. The investor decides the percentage of the budget in the 
assets such 0≥iw , i=1,...,n (where n is the number of available assets and short sales are not permitted) and 

11 =′w  is the budget constraint. In our study, a budget of one unit is supposed without loss of generality. The 
return of the portfolio, RwRp ′= , is treated as random variable since the generated assets returns, R, are 
unknown. The expected return of the portfolio w is )()( REwRE p ′= . 

The portfolio optimization problem lies in minimizing the risk of an investment for a desired level of 
expected return. Suppose that )(⋅ρ  is a risk measure. Then for a given expected return *R  the optimal portfolio 
is the solution of the following optimization problem: 

0
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RREw
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 (1) 

where )(⋅ρ is a function that assigns to each portfolio w its risk, Rw ∈)(ρ . When Problem (1) is solved, we 
can obtain a numerical relationship between the expected return )( pRE and )( pRρ  for different values of the 
parameter *R . This is the efficient frontier in which a rational investor is located in function of the risk that he 
wants to assume. 



 

 91

Traditionally, empirical finance has identified risk with return variability. Portfolio theory of Markowitz 
proposes a classical measure of dispersion, variance, as the risk measure. Hence Markowitz problem takes )(⋅ρ  
equal to the variance, wwRp Ω′=)(ρ , where Ω  is the covariance matrix and the objective function is: 

ww
w

Ω′min  (2) 

Although some analytical methods are well-known for solving objective function (2), if the problem is 
extended by introducing more complex risk measures, it requires a new efficient approach. Developing this 
approach on the basis of classical methods might not be possible due to the irregularity of the objective function 
and the search space. 

The risk definition has changed due to the desire of financial industry and investors of limiting downside 
risk by putting an upper bound on the maximum loss. In this work, we consider the Value-at-Risk (VaR) as an 
appropriate risk measure. VaR is defined as the maximum expected loss on an investment over a specified 
horizon given a confidence level 1-α. Usually α is fixed to be a 5% or 1%. In our study, we took )(⋅ρ  equal to 
the VaR definition given in Jorion (2001). That is,  

)()()()( pRqpREpRVaRpR αρ −==  (3) 

and the objective function is,  

)()(min pRqpRE
w α−  (4) 

where )( pRqα  is the α-quantile of pR . 

There are several ways of computing VaR(Rp). Some researchers assume E(Rp) to be zero when VaR is 
calculated daily; then )()( pRqpRVaR α−≈ . VaR can also be estimated assuming that the distribution of the 
returns serie belongs to a parametric family. Approaches to quantify VaR such as delta-normal, delta-gamma or 
Monte Carlo simulation method rely on the normality assumption or other prespecified distributions. These 
approaches have several drawbacks, such as the estimation of parameters and whether the distribution fit 
properly the data in the tail or not (Baixauli, 2004). In our analysis we computed the VaR by historical 
simulation using Equation (3). Hence, )( pRqα  is the empirical α-quantile of the actual historical data. This 
specification is valid for any underlying distribution, discrete or continuous, fat or thin-tailed. 

The portfolio optimization problem when objective function (2) is considered implies that investor 
preferences are defined in mean-variance space and Pareto efficient portfolios make up the efficient frontier in 
this space, which we call σ-efficient frontier. Otherwise, when objective function (4) is considered the investor 
preferences are expressed as a function of return and maximum loss and a VaR-efficient frontier made up of 
Pareto efficient portfolios in the mean-VaR space has to be found. As we pointed out, Problem (1) becomes a 
non-convex and non-differential risk-return optimization problem with the objective function (4). For this 
reason, we use a multiobjective GA approach to find VaR-efficient portfolios and σ-efficient portfolios by 
solving the following optimization problems: 
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It must be highlighted that the inclusion of cardinality constrains, nonlinear and non-differentiable 
transaction cost structures, buy-in thresholds or round lots would also turn the classical mean-variance problem 
(6) into a non-convex, non-differential model (Lin, 2008). This would motivate the application of multiobjective 
Gas for an efficient optimization of portfolio structures. Finally, is worthy to evaluate the differences between σ-
efficient portfolios and VaR-efficient portfolios since they are a subset of feasible portfolios. 
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3. BASICS OF GENETIC ALGORITHMS 

Genetic Algorithms (GAs) (Holland, 1975; Goldberg, 1989) are stochastic optimization techniques that 
mimic the way species evolve in nature. In natural evolution many organisms evolve by means of two 
mechanisms: natural selection and sexual reproduction. 

GAs emulate this process by encoding the points of the search space (called individuals) in a 
chromosome-like shape and evolving a population of them through a number of generations using mechanisms 
drawn from natural evolution. The better suited to the optimisation problem an individual is, the more chances it 
has to produce offspring for the next generation. As the generations progress, this results in the prevalence in the 
population of stronger solution over weaker ones. Thus, the evolution process tends to near optimal solutions. 

A GA initiates the process of searching by randomly generating an initial population of possible 
solutions. The performance of each solution is evaluated using a fitness function, which is a measure of how 
good the performance of the solution is. Then, a new generation is produced according to the three main 
operators of the GA: selection, crossover and mutation. 

Selection determines which solutions are chosen for mating according to the principal of survival of the 
fittest (i.e. the better the performance of the solution, the more likely it is to be chosen for mating and therefore 
the more offspring it produces). In this work we used tournament selection. The tournament selection method 
works by choosing a group of $q$ individuals randomly from the population and selecting the best individual in 
terms of fitness from this group. 

Crossover allows an improvement in the species in terms of the evolution of new solutions that are fitter 
than any seen before. The crossover operator combines the features of two parents to create new solutions. One 
or several crossover points are selected at random on each parent and then, complementary fractions from the 
two parents are spliced together to form a new chromosome. 

Figure 1. Flow Chart of a GA 
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Mutation reintroduces values that might have been lost through selection or crossover, or creates totally 
new features. The mutation operator alters a copy of a chromosome. One or more locations are selected on the 
chromosome and replaced with new randomly generated values. Mutation is used to help ensure that all areas of 
the search space remain reachable providing higher variation in the chromosomes of each population. It also 
allows the reintroduction of features that might have been lost during the selection procedure. 

The cycle selection-crossover-mutation-evaluation is performed until a termination criterion is met (for 
instance, a predetermined number of generations). 

 
4. APPLICATION OF GAs TO THE PORTFOLIO OPTIMIZATION PROBLEM 

In this section we briefly describe the multiobjective GA framework that we used for portfolio 
optimization. The GA implementation is based on ECJ (\url{http://cs.gmu.edu/\~{}eclab/projects/ecj}), a 
research evolutionary computation system in Java developed at George Mason University's Evolutionary 
Computation Laboratory (ECLab). 

 
4.1. Encoding/decoding 

Each individual was encoded as a vector of integers ranging from 0 to 99. Every element of the vector 
represents the percentage of the budget invested in that particular asset ( niwGA

i ,...,1,0 =≥ ). Therefore, the 
length of the vector equals the number of assets available in the portfolio.  However, the summation of these 
weights will not be 1, violating the constraint 11 =′w . This constraint imposes the need of normalizing the 
vector during the decoding process as follows: 

W
w

w
GA
i

i =  (7) 

where iw  represents the new weight invested in asset i after normalization, and W is the summation of all the 
elements of the vector, that is ∑ =

= n

k
GA
kwW

1
. 

 
4.2. Multiobjective GA 

According to the survey on evolutionary multiobjective optimization presented in Coello (2006), a 
number of algorithms have been designed since the mid-1980s in order to apply evolutionary techniques to 
multiobjective problems. Roughly, these algorithms could be split into two “generations”. The algorithms 
proposed in the second generation outperformed those of the first generation and are characterized by te use 
of “elitism”, that is, the use of an additional population where the non-dominated individuals found along 
the evolution are stored. Some of the most representative algorithms from this second generation, to name a 
few are: Strength Pareto Evolutionary Algorithm (SPEA) (SZitzler, 1999), Strength Pareto Evolutionary 
Algorithm 2 (SPEA2) (Zitzler et al., 2001; Zitzler et al., 2002), Pareto Archived Evolution Strategy 
(PAES) (Knowles, 2000) and Nondominated Sorting Genetic Algorithm II (NSGA-II) (Deb et al., 2002).  

In this work the SPEA2 package of ECJ was used for the multiobjective aspect of the optimization. The 
reason for this choice was twofold. On the one hand, SPEA2 and NSGA-II have shown better performance than 
tha others in various benchmark problems (Zitzler et al., 2002). On the other, the on-line avability of the package 
facilitates the reproducibility of the results presented in this paper. 

Figure 2. Algorithm main loop 

1: A(0) = ∅ 
2: P(0) = init_random(); 
3: g = 1; 
4: eval(P(g-1)); 
5: eval(A(g-1)); 
6: A(g) = save(P(g-1), A(g-1)); 
7: truncate(A(g)); 
8: if g>g_max then stop; 
9: M(g) = select(A(g)); 
10: P(g) = cross&mut(M(g)); 
11: g = g+1; 
12: go to Step 4; 
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As mentioned earlier, in GAs the fitness of a solution (e.g. a particular portfolio) is a measure of how 
good the solution is. That is, in our particular case, the goodness of a portfolio could be measured by how much 
return we get an how much risk we assume. However, in multiobjective GA the concept of fitness changes. The 
fitness of an individual it is not anymore how well it solves the problem, but it is based completely on the Pareto 
optimality concept. The fitness of an individual is a function of how many individuals it dominates and by how 
many individuals it is dominated (for a more detailed explanation see Zitzler et al. (2001) and Zitzler et al. 
(2002)). Thus, nondominated individuals have the highest possible fitness and the rest of individuals are ranked 
according to their dominance relations.  

Other important concept that is often used in GAs is the concept of elitism. In an elitist selection 
technique the best individuals of the population are automatically selected to go to the next generation without 
undergoing crossover or mutation. In the context of multiobjective GAs, the use of a subpopulation (usually 
called archive) where the nondominated individuals are stored along the generations guarantees that 
nondominated solutions are not lost during the run and that a solution reported as nondominated is nondominated 
with respect to any other solution generated by our algorithm. 

The algorithm main loop is shown in Figure 2. The algorithm works as follows: 

 In step 1 and 2 the archive, A(g), where the nondominated solutions are stored and the population, P(g), 
are initialized. A(0) is an empty set and P(0) is initialized at random. 

 In step 3 the generation counter g is set to 1 and then the evolution loop starts. 

 In step 4 and 5 the individuals in the population and the archive are evaluated. 

 According to this evaluation a new archive is created in step 6 containing all the nondominated 
individuals found in the union of the previous archive and the population. 

 If the size of the resulting archive exceeds the archive size, in step 7 the archive is truncated. This 
truncation method removes those individuals which are at the minimum distance of another individual. 
This way the characteristics of the nondominated front are preserved and outer solutions are not lost. 

 The termination criterion in step 8 stops the algorithm when the number of generations has been 
completed. 

 In step 9 tournament selection with replacement is performed in the archive set in order to fill the 
mating pool, M(g). 

 The new population, P(g), is created in step 10 by applying crossover and mutation to the mating pool. 

 In step 11 the generation counter is increased. 

 
4.3. Individuals Evaluation 

In order to establish the dominance relations among the individuals in the population and in the archive 
all the individuals need to be evaluated. During the evaluation process the return each candidate portfolio 
generates and its level of risk are computed. 

Figure 3. Fitness evaluation 

1: ind_n = norm(ind); 
2: R = calculate(hist_data, ind_n); 
3: expR = sum(R[i])/num_obs; 
4: arrange(R); 
5: position = 0.05*num_obs; 
6: quantile = R[position]; 
7: VaR = expR - quantile; 
8: ind_fitness[1] = set_obj1(expR); 
9: ind_fitness[2] = set_obj2(1/VaR); 
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The evaluation method is shown in Figure 3. The evaluation method works as follows: 

 In step 1 the individual, ind, is normalized. ind is a vector of n integers ),...,,( 21
GA
n

GAGA www , where n 

is the number of assets available in the portfolio. The elements of the normalized individual, iw , are as 

shown in Equation (7). 

 In step 2 the historical series of portfolio return is calculated as ijRn
i iw∑ =1  j∀ , where iw  is the 

normalized weight assigned to asset i, n is the number of assets available in the portfolio and ijR  is the 

return of asset i at time j. 

 In step 3 the expected return of the portfolio is calculated as: ∑ == T
j jR

T
RE 1

1
)( , where T is the 

number of observations per asset. 

 In order to calculate the empirical VaR, the vector R is arranged from highest to lowest in step 4. 

 The position the 0.05-quantile takes is calculated in step 5 as 0.05T (rounded if necessary). 

 In step 6 the 0.05-quantile is set to the element in the position 0.05T in the returns vector. 

 The VaR is calculated in step 7 as the expected return minus the 0.05-quantile of the historic return 
series. 

 In step 8 and 9 the two objective values of ind are set to the expected return and the inverse of the VaR 
(since the GA implemented maximizes the objectives). 

 
4.4. Multiobjective GA Control Parameters 

Table 1 shows the control parameters of the multiobjective GA used. 

Table 1. GA control parameters 

Parameter Value 
Replacement operator Generational 

Selection operator Tournament selection 
Tournament group size 7 

Crossover rate 1 
Mutation rate 0.05 

Population size 1000 
Archive size 100 

Termination criterion 50 generations 
 
5. DATA ANALYSIS 

The data used in this work were extracted from the Bloomberg database. It is a set composed of  twelve 
composite returns indices from USA, Canada, Japan, UK, France, Germany, Spain, Holland and Sweden. We 
employed weekly data of these indices from 

January 1990 until December 2007. This provided us with 939 observations per index. the reason for 
employing weekly data instead of daily data was that financial managers do not restructure portfolios so 
frequently. Furthermore we chose weekly data instead of monthly data to avoid inaccurate VaR estimates from 
small samples. 
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Table 2. Summary statistics classified by periods 

  IN-SAMPLE PERIOD OUT-SAMPLE PERIOD 
  PERIOD 1990-1999 PERIOD 2000-2001 
Country Index Mean Deviation Skewness Mean Deviation Skewness 

USA DJ Industrial 0.2702 2.036 -0.858 -0.1219 1.163 0.011 
 SP500 0.2722 2.040 -0.698 -0.2270 2.396 -0.126 
 Nasdaq 0.4152 2.843 -0.829 -0.6781 5.851 -0.164 
Canada SPTSX 0.1433 1.958 -0.997 -0.0805 3.092 -0.510 
UK Footsie 100 0.1940 2.100 -0.091 -0.2338 2.368 -0.244 
France CAC 40 0.2089 2.771 -0.237 -0.2349 3.135 0.121 
Germany DAX 0.2520 2.691 -0.625 -0.2623 3.325 -0.234 
Spain IBEX 35 0.2601 3.077 -0.389 -0.3236 3.192 0.065 
Holland AEX 0.3062 2.462 -0.826 -0.2716 2.733 -0.428 
Sweden OMX 30 0.3226 3.104 -0.121 -0.2843 4.056 0.016 
Japan Nikkei 225 -0.1394 3.225 0.064 -0.5161 3.482 0.349 
Europe Euro Stoxx 50 0.2819 2.433 -0.552 -0.2383 3.012 -0.032 
        
  IN-SAMPLE PERIOD OUT-SAMPLE PERIOD 
  PERIOD 1992-2001 PERIOD 2002-2003 
Country Index Mean Deviation Skewness Mean Deviation Skewness 

USA DJ Industrial 0.2208 2.047 -0.787 0.0402 3.191 0.160 
 SP500 0.1948 2.087 -0.700 -0.0328 3.158 -0.063 
 Nasdaq 0.2324 3.701 -0.754 0.0272 3.875 0.010 
Canada SPTSX 0.1504 2.273 -0.973 0.0690 1.968 -0.801 
UK Footsie 100 0.1471 2.151 -0.211 -0.1513 3.189 -0.636 
France CAC 40 0.1843 2.822 -0.238 -0.2484 4.311 -0.149 
Germany DAX 0.2281 2.810 -0.647 -0.2620 5.057 -0.040 
Spain IBEX 35 0.2245 3.074 -0.343 -0.0610 3.712 -0.348 
Holland AEX 0.2361 2.581 -0.781 -0.3796 5.172 -0.219 
Sweden OMX 30 0.3133 3.270 -0.193 -0.2823 3.924 0.017 
Japan Nikkei 225 -0.1449 3.077 0.196 -0.0259 3.459 0.127 
Europe Euro Stoxx 50 0.2525 2.591 -0.503 -0.2940 4.594 -0.220 
        
  IN-SAMPLE PERIOD OUT-SAMPLE PERIOD 
  PERIOD 1994-2003 PERIOD 2004-2005 
Country Index Mean Deviation Skewness Mean Deviation Skewness 

USA DJ Industrial 0.1941 2.432 -0.438 0.0426 1.454 -0.468 
 SP500 0.1643 2.465 -0.497 0.1337 1.412 -0.434 
 Nasdaq 0.1857 4.003 -0.580 0.1189 2.127 -0.312 
Canada SPTSX 0.1233 2.360 -0.932 0.3063 1.478 -0.580 
UK Footsie 100 0.0486 2.431 -0.504 0.2255 1.335 -0.242 
France CAC 40 0.0835 3.205 -0.278 0.2828 1.665 -0.720 
Germany DAX 0.1076 3.476 -0.439 0.3000 2.064 -1.032 
Spain IBEX 35 0.1454 3.258 -0.308 0.3050 1.755 -1.313 
Holland AEX 0.1094 3.388 -0.619 0.2589 1.902 -0.690 
Sweden OMX 30 0.1641 3.417 -0.334 0.3854 1.982 -0.655 
Japan Nikkei 225 -0.0902 3.080 0.220 0.4114 2.244 -0.593 
Europe Euro Stoxx 50 0.1244 3.205 -0.478 0.2550 1.769 -1.002 
        
  IN-SAMPLE PERIOD OUT-SAMPLE PERIOD 
  PERIOD 1996-2005 PERIOD 2006-2007 
Country Index Mean Deviation Skewness Mean Deviation Skewness 

USA DJ Industrial 0.1445 2.438 -0.402 0.1848 1.701 -0.653 
 SP500 0.1404 2.479 -0.469 0.1344 1.714 -0.707 
 Nasdaq 0.1537 4.022 -0.547 0.1479 2.165 -0.957 
Canada SPTSX 0.1676 2.342 -0.980 0.1876 1.849 -0.933 
UK Footsie 100 0.0827 2.407 -0.556 0.1295 1.992 -0.929 
France CAC 40 0.1777 3.116 -0.367 0.1642 2.207 -0.883 
Germany DAX 0.1650 3.471 -0.491 0.3682 2.284 -0.980 
Spain IBEX 35 0.2062 3.148 -0.401 0.3256 2.121 -1.126 
Holland AEX 0.1302 3.426 -0.635 0.1558 2.150 -0.854 
Sweden OMX 30 0.2011 3.362 -0.385 0.1198 2.861 -1.087 
Japan Nikkei 225 -0.0393 2.961 0.037 -0.0876 2.852 -0.530 
Europe Euro Stoxx 50 0.1654 3.207 -0.530 0.1969 2.053 -0.983 
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We considered four in-sample periods that consisted of ten consecutive years, two years apart from each 
other, that is, periods 1990-1999, 1992-2001, 1994-2003 and 1996-2005. For evaluating the out-sample capacity 
of the selected portfolios we chose one biannual out-sample period for each in-sample period, that is, periods 
2000-2001, 2002-2003, 2004-2005 and 2006-2007. The two first two-year periods, January 2000-December 
2001 and January 2002-December 2003, are bearish periods whereas the other two-year periods, January 2004-
December 2005 and January 2006-December 2007, are bullish periods. 

In Table 2 the data are analyzed. It can be observed that the average weekly return on the indices over the 
initial in-sample period 1990-1999 is positive for all indices except for Nikkei. The average weekly standard 
deviation in this period is equal to 2.56%. In period 2000-2001 all indices exhibit negative average weekly 
return. Specifically, the average weekly return on the indices is negative and equal to -0.289% and the standard 

deviation is 3.24%. Years 2000 and 2001 are characterized by big losses and high volatility. Years 2002 
and 2003 are characterized by minor losses and high volatility. The average weekly return is negative -0.133% 
and the standard deviation is 3.80%. In the last two-year periods, all indices exhibit positive average weekly 
return and low volatility. In years 2004 and 2005 the average weekly return is positive, 0.252%, and the standard 
deviation is 1.76%, whereas in years 2006 and 2007 the average weekly return is positive, 0.168%, and the 
standard deviation is 2.162%. It can also be observed that significant skewness is prevalent for all periods. 

 

6. EMPIRICAL RESULTS 
For starters and in order to test our multiobjective evolutionary approach, we solved Problem (6) using 

GAs and compared the results obtained with those generated by classical Quadratic Programme (QP). If our 
approach is good enough the mean square error and the mean absolute error of the deviation of N σ-optimal 
portfolios computed using QP, o

QPw , and GA, o
GAw , should be small. That is, Equations (8) and (9) should be 

close to zero.  

∑
=

−=
N

o
o
GAwo

QPw
N

MSE
1

2))()((
1

σσ  (8) 

∑
=

−=
N

o
o
GAwo

QPw
N

MAE
1

))()(
1

σσ  (9) 

where, )( o
QPwσ  is the standard deviation of the efficient portfolio o computed using classical quadratic program 

for a prespecified mean return; and )( o
GAwσ  is the standard deviation of the efficient portfolio o computed using 

multiobjective GA. 

Figure 4 shows the σ-efficient frontier obtained with QP and GA, respectively. As it is shown both are 
overlapped and the MSE and the MAE are close to cero. The GA calculates accurately the σ--efficient frontier, 
as QP does. However, the GA approach is flexible enough to solve Problem (5) while QP is not suitable at all. 

So far we have proven that multiobjective GAs can easily solve Problem (6), i.e., Markowicz classical 
problem. Now we want to demonstrate that multiobjective GAs are able to solve Problem (5), the mean-VaR 
problem, and also that the solution to the σ-optimal problem does not necessarily solve the VaR problem, since 
the substitution of σ with some related risk measure as VaR has no sense if optimal portfolios for σ have a VaR 
value which is close to the optimal VaR. 

Figure 4. Mean-variance efficient frontier computed with GA and QP 
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The portfolio that minimizes the deviation does not minimize VaR.  Figures 5 to 8 show both the σ -
efficient frontier obtained with QP and the GA VaR-efficient frontier obtained with GAs in the VaR-return space 
for in-sample periods 90-99, 92-01, 94-03 and 96-05. That is, we have plotted the VaR-efficient frontier obtained 
using GAs against the VaR values of the σ -optimal portfolios. The vertical axis shows the expected rate of 
return after a week, that is 5-trading days, in percentage points. The horizontal axis shows VaR values as a 
percentage of the original portfolio value. 

Figure 5. Efficient frontier for mean-VaR portfolios and frontier for mean-VaR with mean-variance efficient 
frontiers, 1990-1999 
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Figure 6. Efficient frontier for mean-VaR portfolios and frontier for mean-VaR with mean-variance efficient 
frontiers, 1992-2001 
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Figure 7. Efficient frontier for mean-VaR portfolios and frontier for mean-VaR with mean-variance efficient 
frontiers, 1994-2003 
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In period 90-99 (see Figure 5) the higher expected return the more similar the mean-variance and the mean-VaR 

efficient portfolios. The expected return obtained for portfolios with a VaR less than 3.4% is lower in the case of 
choosing the portfolio based on σ-efficient portfolios. In period 92-01 (see Figure 6) it can be observed that the 
differences between the efficient frontiers are not so significant (the gap is negligible). Although it should be noted that 
the vertical axis represents a larger range of expected returns than for other periods. Again the larger difference in 
expected returns appears for VaR values below 3.5%. In period 94-03 (see Figure 7) the difference between both 
efficient frontiers is absolutely relevant for portfolios with VaR below 3.5%. During the period 96-05 (see Figure 8) the 
differences between the efficient frontiers tend to disappear when portfolios with high expected return are compared. It 
must be highlighted that all this efficient frontiers have been obtained over ten year periods which included different 
conditions, high and small volatility periods and bullish and bearish markets. To sum up, we observe differences for all 
the periods considered. Such fact hints to use the GA algorithm in order to introduce new measures of risk. 

Figure 8. Efficient frontier for mean-VaR portfolios and frontier for mean-VaR with mean-variance efficient 
frontiers, 1996-2005 
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Following Gaivoronski (2005), in order to quantify the differences between σ-optimal portfolios, owσ , and 
VaR-optimal portfolios, o

VaRw , we calculated the substitution error given by the largest value of VaR for some 
expected return. To measure this error, for each expected return value *R  we evaluated the VaR of the VaR-optimal 
portfolio, )( o

VaRwVaR , and the VaR of the $\sigma$-optimal portfolios, )( owVaR σ . That is, we computed, 
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This measure represents the relative improvement of VaR and expected return as percentage. We 
computed the mean of oo

VaR EE σ− and the percentage of cases in which the improvement exceed some 
threshold, given by θ . Furthermore, we obtained the mean squared error and the mean absolute error of the VaR 
of mean-VaR efficient portfolios and the VaR of the mean-variance efficient portfolios as follows, 
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where N is the number of portfolios in the efficient frontier. 

Table 3 compares the in-sample results. It shows that the mean square error (MSE) from Equation (11) is 
between 0.036 in 90-99 and 0.023 in 94-03 and the mean absolute error (MAE) from Equation (12) is between 
0.16% in 90-99 and 0.10% in 94-03. That is, the annualized values are 8.32% and 5.27%, which represent 
annualized expected return lost per unit of risk. When we compare the σ-efficient frontier and the VaR-efficient 
frontier in terms of expected return per percentage of VaR we can observe that the majority of VaR-optimal 
portfolios are more efficient, if we measure efficiency in terms of Equation (10). Particularly, the percentage of 
VaR-optimal portfolios that are more efficient than σ-optimal portfolios, that is, 0>− σEEVaR %, goes from 
81.21% in 96-05 to 90.33% in 94-03. The mean improvement goes from 0.134% in 96-05 to 0.429% in 90-99, 
which implies in annualized values 7% to 22.3%. 

Table 3. Comparison of in-sample results for efficient frontiers. 

 1990-1999 1992-2001 1994-2003 1996-2005 
MSE 0.036087 0.02557984 0.02342789 0.02824355 
MAE 0.160304 0.14469408 0.10156832 0.14065462 

mean EVaR-Eσ 0.4295 0.2174 0.1354 0.1348 
% EVaR-Eσ>-1% 100 100 100 100 
% EVaR-Eσ>-0.5% 100 100 99.39 100 
% EVaR-Eσ>0% 86.99 82.47 90.33 81.21 
% EVaR-Eσ>0.5% 37.66 1.28 0 0 
% EVaR-Eσ>1% 10.76 0 0 0 

Finally, the optimal portfolios obtained using in-sample data were now tested using out-sample data. We 
analyzed if this efficient behavior remains out-sample. Table 4 summarizes the results. 

Table 4. Comparison of out-sample results for efficient frontiers. 

 2000-2001 2002-2003 2004-2005 2006-2007 

mean EVaR-Eσ 0.3438 0.5835 0.1407 0.5046 

% EVaR-Eσ>-1% 93.72 100 97.58 100 

% EVaR-Eσ>-0.5% 91.03 84.61 87.31 100 

% EVaR-Eσ>0% 75.78 64.52 61.32 79.61 

% EVaR-Eσ>0.5% 40.80 64.52 32.93 58.28 

% EVaR-Eσ>1% 23.76 45.72 0.60 8.91 
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As it is shown in Table 4, if we measure efficiency in terms of Equation (10), the percentage of VaR-
optimal portfolios that are more efficient than σ-optimal portfolios goes from 61.23% in 04-05 to 75.78% in 00-
01. The mean improvement goes from 0.14% in 04-05 to 0.58% in 02-03, which means 7.28% to 30.34% in 
annualized values. Hence, the mean difference is always positive both in-sample and out-sample and the 
variance of the improvement is bigger out-sample. 

Overall, the results point out the importance of solving the mean-VaR problem using an appropriate 
method in order to select an efficient portfolio when investors express their market risk in function of the VaR. 
Multiobjective GAs have proven to be able to solve the problem. Moreover, the time needed to compute around 
300 points of the efficient frontier on a 2.8 GHz Celeron CPU with 1 GB RAM is of 60 seconds. This means that 
the algorithm could handle a massive amount of data (if available) in reasonable computing time. 

 

7. CONCLUSIONS 

We have developed a framework for portfolio selection that moves away from convex objective functions 
or standard mean-variance approach where non-differential restrictions can not be imposed. In our analysis, the 
risk measure minimized is VaR, which leads to non-convex objective functions. We have compared the mean-
variance with mean-VaR approach to measure efficiency of the classical approach when investors are worried 
about portfolio's potential loss function, that is, the downside risk. We have evaluated optimal VaR-efficient 
portfolios and optimal σ-efficient portfolios for international stock indices observed weekly over the period 
1990-2007. The evaluation has been performed in-sample and out-sample. Furthermore, out-sample period 
consists on both bullish and bearish markets and high and low volatility periods. Results indicate reliability of 
VaR-efficient portfolios and significant improve over σ-efficient portfolios. Multiobjective GAs have 
demonstrated their adequacy for solving this problem in no-time. 
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