
To Question of Construction Failure-Safe Digital System On
Programmable Logic Integrated Circuits

N.A. Korotaev, M.M. Vysocki
Belarusian State University, F. Skaryna av. 4, 220050 Minsk, Belarus, e-mail: Vysocki@bsu.by

Abstract: In the article are considered questions of
construction failure-safe digital computing systems (DCS)
on PLIC (programmable logic integrated circuits) of a
type PLA (programmable logic arrays) with self-
diagnosing, reconfiguration and self-restoration.

Keywords: Self-checked circuits of the built-in control
(SCCBIC), working elementary computing modules
(WECM), self- tested.

The fast growth of semi-conductor technologies in a
direction of high density of integrated circuits and
reduction of their consumed capacity has made the
programmable logic integrated circuits by the important
instrument for automatic development of various
microcircuits, which programming is realized by the
constructor of the equipment or user.

Considering known advantages [1] use PLIC for
designing the complex numerical devices (bus controllers
and peripheries, decoders, multiplexers, microprocessors
and others), on the base which are built
telecommunication systems and networks, actual are
studies on ensuring their reliability (network must
perfectly work at length of certain interval of time) and
survivability (the user of a network does not get a refusal
of services of communication, even if the network is
faulty on separate sites).

The methods, developed to the present time of self-
diagnosing are subdivided into facility of construction
self- checked (i.e. functional diagnosing) and facility self-
tested. With provision for this designing the self-
diagnosing digital systems on PLIC must be based on
following principles:

1. Functional diagnosing facilities must be self-
checked circuits of the built-in control (SCCBIC) [2], find
faults at a moment of their first manifestation and occupy
a minimum area of crystal, conducted on the realization
SCCBIC.

2. Facilities self-tested must ensure high validity of
testing, acceptable length of testing, reduction before the
minimum of additional hardware expenses. This is
connected with beside requirements: 1) performing a
diagnostic decomposition: feedback breakup and
reception of checkable combination schemes;
2) organization of controllability elements of memory:
ensuring a possibility of separate checking the memory
elements; 3) reception of trivial tests; 4) syntheses of
built-in generators of tests and analyzers of output
reactions of schemes; 5) organization of management
self-tested (process self-tested is realized automatically by
means of corresponding hardware-software facilities);

3. Facilities to reconfiguration must ensure following:
1) at presence in regular structure of computing reserve
system (free entry, output, intermediate buses and
elements) reconfiguration is executed by change faulty
components of reserve and full reconstruction of thereby
functional numerical system possibilities; 2) if reserve is

absent or exhausted and it is necessary reconfiguration, is
realized partial functional recovering a structure on the
base of redistribution of its resources between stay
functions; 3) for regular structures of matrix type to
ensure a shaping the possible configurations and choice in
automated (automatic) mode of corresponding fault
(defect) variant to configuration; 4) acceptable time of
reconfiguration, including time of the analysis of fault,
time of decision makings on the way of realignment of
structure and time of own switching; 5) at the appearance
of refusal of controlling part of structures (if controlling
part not duplicated) reconfiguration is not executed, is
since broken resource management.

Choice of facilities to reconfiguration depends on
quantitative and qualitative composition of resources of
regular numerical system structure and principles of their
distribution in the system.

At the building self-tested digital systems on PLIC the
most important problems are problems of syntheses of
generators of tests, analysis schemes of output reactions
and performing a diagnostic decomposition. For raising
validity of testing reasonable to use in regular structures
as built-in generators of tests generators, built on the
register of shift with nonlinear inverse will [3].

Diagnostic decomposition (partitioning a source
scheme on row tested subcircuits) is conducted for the
reason perfecting the following factors: 1) validity of
testing; 2) velocity of testing; 3) simplicity of governing
process self-tested. For the analysis of output reactions of
elements (subcircuits) are used or many-server signature
analyzers, or counters [3].

4. Facilities self-restoration must realize a restoration
refused digital system (i.e. restoration an ability of
refusing system to execute given functions) automatically
(without the participation of crew of technical
maintenance) by means of hardware-software facilities.
At facility self-restoration with reconfiguration facilities
must ensure (by changing the refusing elements by
backup copies, transition on other mode of operation,
realignments of structure and etc.) one of the three whole
operation of runnel digital system structure at presence in
her faults: 1) performing a given number of functions,
2) performing certain subset from the given number of
functions, 3) execution to at least one functions.
Consequently, transition refused digital computing system
in the rundle condition can occur only as a result working
the facilities to reconfiguration and self-restoration.

For the study of fail-safe characteristic hardy regular
structures (DCS) on PLIC of a type PLA with self-
diagnosing, reconfiguration and self-restoration is offered
structured operation model failure-self DCS with
structured redundancy (fig. 1), which is kept an object
self-restoration (OSR), including working elementary
computing modules (WECM), presenting itself, for
instance, microprocessors (MP) on PLIC of a type PLA,
spare ECM (SECМ) and refused ECM (RECM) with

203

functional diagnosing facilities (SCCBIC); facilities self-
restoration (FSR) and facility to reconfiguration (FR) with
SCCBIC, realized on PLIC of a type PLA; N - a total
number ECM.

 RECM with SCCBIC

WECM with SCCBIC

SECM with SCCBIC

FSR with CBIC

FR with SCCBIC

DCS, N ECM

OSR

Fig.1 - Structured model functioning failure-safe DCS

Rundle ECM with SCCBIC, executing all given
working functions of regular structure DCS, form a
source structure (computing kernel). In the event of the
refusal faulty ECM is excluded by facilities to
reconfiguration from the source structure and is changed
on spare ECM, but RECM is comprised of the number
ECM, subjecting restoration. After restoration RECM
undertakes on the account by facilities to reconfiguration.
Facilities self-restoration, restoring RECM, renew a
number SECM and restore a correct operation DCS. If
reserve is exhausted, source structure is reconstructed by
means of FR without changing RECM on SECM, i.e.
approaches degradation regular structure DCS (reduction
of its computing abilities).

Algorithm of restoration capacity to work such DCS is
executed as follows.

Step 1. Executed normal mode of operation DCS.
Herewith work correspond facilities self-diagnosing
(SCCBIC), will take aim which is a finding faulty ECM.
When finding faulty ECM is executed step 2, otherwise
lasts a performing a step 1.

Step 2. Facilities to reconfiguration on the signal
SCCBIC exclude faulty ECM, include its in the
composition RECM for restoration by means of FSR and
is executed transition on the step 3.

Step 3. At presence of reserve (SECM) is executed
reconfiguration and restoration capacity to working DCS
with the conservation of all working functions, then - a
transition on the step 1. If reserve is absent, is executed
transition on the step 4.

Step 4. If realignment of structure of system possible,
are executed reconfiguration and restoration capacity to
work with the conservation of part of the working
functions, whereupon - a return on the step 1. At
impossibility of reconfiguration a system information on
this is reported user and is executed transition on the
step 5.

Step 5. End of algorithm.

For raising reliability and vitality DCS possible build
to facility functional self-diagnosing (SCCBIC) and
reconfiguration in element base – PLIC of a type PLA
itself. These facilities will find and allocate faults
(defects) in input, intermediate and PLA output buses. In
this case each PLA must have reserve input, product and
output lines. Volume of this reserve depends on degrees
of integration of crystal and area of crystal, conducted
under working functions.

 Thereby, under functioning DCS (fig. 1), built on the
said element base, are first tested for presence of fault
elementary computing modules simultaneously with
execution by them working functions. When finding the
faults are executed rearranging and recovering capacity to
work ECM with the conservation of all working functions
or their part and return in the normal mode of operation. If
rearranging and recovering capacity to working ECM
impossible, is given signal information in facility of
reconfiguration DCS, which disconnect faulty ECM, and
lasts a performing an above-mentioned algorithm for the
reason conservation of capacity to work of the whole
structure DCS.

Thereby, when making a sufficient reserve and
provision by the necessary amount SSCBIC possible
design regular structures DCS on PLIC high vitality.

Total number (N) ECM DCS possible write as:

1 2 1 2(,) (,) (,) (,)N n i t n i t M i t M i t= + + + ,

where 1(,)n i t - average refused ECM, taken into account
by facilities to reconfiguration at moment t >= 0, i -
number working ECM under t = 0;

2 (,)n i t - average restored by ECM;
M1(i, t) - population mean of number refused ECM,

taken into account by facilities self-restoration.
M2(i, t) - population mean of number working ECM

(under t = 0 M2(i, 0) = i).
Potential vitality DCS is defined on formula:

F(i, t)= M2(i, t)/N,
but employment W(i, t) of facilities self-restoration - in
the manner of:

W(i, t) = M3(i, t)/m,,
where M3(i, t) - a population mean of number refused
ECM, occupied self-restoration; m - a number refused
ECM.
CONCLUSION

Tinned results of studies considered structured models
intolerant DCS on PLIC have shown that for deciding a
problem of making of reliable and intolerant (robust) DCS
and networks is offered their building on the new element
base – PLIC of a type PLA with facilities functional self-
diagnosing, reconfiguration and self-restoration.
REFERENCES
[1] Solovjev V.V. Designing the digital systems on the

base programmable logic integrated circuits. - М.:
Hotline - Telecom, 2001.

[2] Sogomonjan Е.S., Slabakov Е.V. Self-checked
devices and failure-safe systems. - М.: Radio and
communication, 1989.

[3] Jarmolik V.N. Checking and diagnostics of digital
lines PC. - М.: Science and technology, 1988.

204

Using Java to Prototype a H.264/AVC Decoder
Marek Parfieniuk1), Alexander Petrovsky1), Alexey Petrovsky2)

1) Department of Real-Time Systems, Bialystok Technical University, Wiejska 45A, 15-351
Bialystok, Poland, marekpk@wi.pb.edu.pl, palex@bsuir.by,

http://aragorn.pb.bialystok.pl/~marekpk
2) Computer Science Department, Belarusian State University of Informatics and Radioelectronics,

Brovki 6, 220013, Minsk, Belarus, petrovsky@bsuir.by, http://www.bsuir.by

Abstract: This paper presents our experiences in using
Java to prototype a H.264 decoder and to develop
accompanying tools: GUI-based diagnostic applications
and demos of subalgorithms. The project is aimed at
preparing a reliable basis for implementing the video
coding standard in hardware. The pros and cons of the
Java programming language are discussed in terms of
developing both such advanced DSP algorithms and
applications using them. Especially, high productivity is
pointed out as an advantage of Java over C/C++, which
is related not only to the language itself but also to the
rich toolset provided as the bundle of the JDK and
NetBeans.

Keywords: H.264, decoder, Java, implementation.

1. INTRODUCTION
Recommended by both ITU-T and ISO/IEC [1-6],

H.264/AVC (Advanced Video Coding: MPEG-4 Part 10)
is the most recent and innovative standard of video
coding, which has widespread industry adoption as
a foundation of new multimedia standards, services, and
products. Especially, it has been chosen to be used for
Blu-ray Disc, digital broadcasting via DVB, 3GPP mobile
communication, teleconferencing, and media streaming
over the Internet.

This huge application area is a consequence of the
great flexibility of H.264, which was designed to be
network-friendly [2]. The encoder, which is equipped
with a lot of options and parameters, allows for
customizing its output bitstream in order to best fit
a given application. Especially, the stream can be adjusted
to the display resolution and computational power of end-
user terminals, and bandwidth usage can be traded off for
the visual quality.

Another advantage of the codec over its predecessors
is much lower usage of bandwidth, as H.264 offers
compression efficiency even two times greater than that
of MPEG-2 Video (H.262), at comparable quality of the
reconstructed video. This has been achieved by
incorporating into the algorithm the most notable and
recent techniques of video coding, which, however,
require increased computational load [7, 8]. In particular,
decoding can require even 4 times more operations than
that of MPEG-2.

In recent years, there is a significant effort to build
infrastructure that supports H.264. Real-time encoding
engines for broadcasting purposes, HDTV-sets, next-
generation media players, and mobile devices need
coprocessors that speed up particular stages of the
algorithm or, even better, chips that realize the entire
encoding or decoding task.

Implementing H.264 is not trivial for several reasons.
As the standard is not a simple extension of the previous
ones, only very limited reuse of existing hardware and
software is possible. From another point of view, the
algorithm complexity makes design difficult, especially if
a small and energy efficient device is expected to operate
in real time. Finally, the standard still evolves, so that
code organization or chip architecture must be made
flexible, which allows it to be easily adopted to handle
future extensions of H.264 or to maximize performance in
a particular application.

The authors have undertaken the challenging task of
addressing these issues. They work on developing a new
flexible and optimized architecture of a H.264 decoder
that is computationally efficient and allows speed to be
traded off for resource consumption. The decoder
additionally has to be modularized and reconfigurable, so
that functionalities of new standard revisions can easily
be added without redesigning the whole system. We
expect at least simplified development of new circuits and
easy customization of a chip in order to best match
application requirements.

In order to complete the task, the team has decided to
design a new object-oriented model of the decoder from
scratch and implement it in software. The developed
classes, after testing their source code, will define
hardware modules, whose functional verification can be
based on data generated using the software.

An accompanying decision was to use the Java
platform in object-oriented development. Applying this
advanced technology was expected to increase
productivity, to make results more reliable and reusable,
and to reduce investments. The issue of real-time
performance of prototype programs was pushed into the
background, as unnecessary in such circumstances.

The paper presents our motivations for using Java,
issues related to this decision, and the appealing results
obtained. It is shown that a methodology based on the
high-level language, with is supported by a rich toolset,
allows for quick prototyping advanced DSP algorithms
like H.264 and for producing well-documented, self-
describing code which can serve as a basis for
implementing real-time hardware. Moreover, an extensive
easy-to-use GUI-based environment for verification and
testing can easily be developed in parallel.

2. H.264 STANDARD
The H.264 video coding standard, also called the

MPEG-4 Advanced Video Coding (AVC), has been
finalized in March 2003. Its development began in 1997
with the aim of achieving better coding performance
compared to up-to-data standards, particularly MPEG-2,
and greater flexibility from the point of view of network

205

applications. The Joint Video Team (JVT), a group of
experts of both ITU and ISO, has then been formed,
which is responsible for developing and maintaining the
standard.

Fig.1 shows the general scheme of a H.264 codec,
which, like the older standards, is a hybrid algorithm that
removes both spatial and temporal redundancy of video
signals by combining transform coding with motion-
compensated predictive coding. The main principle has
been left unchanged because it was possible to achieve
better flexibility and compression efficiency by only
improving subalgorithms.

Motion is estimated more precisely, and thus
compensated more effectively, with quarter-pixel
accuracy and fine-grained partitioning of macroblocks
into smaller units. Moreover, an in-loop deblocking filter
removes the blocking artifact before using a frame for
prediction, which further improves estimation accuracy.
Temporal redundancy is also better removed, because it is
possible to use multiple (up to 16) reference frames. The
bidirectional prediction allows future frames to be
referenced in addition to past ones.

Removing spatial dependencies among pixels by
a decorrelating transform can be supported with multi-
mode intra prediction of a block using adjacent fragments
of the same frame. Moreover, transform size can be
switched between 4×4 and 8×8 in order to best fit
macroblock contents.

Finally, more effective methods of entropy coding
have been employed: Context-based Adaptive Binary
Arithmetic Coding (CABAC) and Context-Adaptive
Variable Length Coding (CAVLC).

All these techniques improve coding performance at
the price of increasing computational demands. The
complexity of H.264 is estimated to be 5-8 times that of
H.263, even though the standard uses efficient
multiplierless transforms to approximate the Discrete
Cosine Transform (DCT).

H.264 specifies several profiles, which address
various applications i.e. different trade-offs among
quality, bitrate, and computational requirements. The
Baseline, Main, and Extended profiles are of primary
importance. The first one has modest computational
demands at the price of quality, the second takes full
advantage of the coding algorithm, whereas the third is
best suited to streaming applications. Recently, the
standard has been extended toward higher fidelity (sample
bit depth greater than 8 bits) and scalable coding, as
Fidelity Range Extension (FRExt) and Scalable Video
Coding (SVC) have been added [3, 4].

It is important that H.264 uses patented techniques,
and thus including an implementation of some of its
profiles into a commercial product requires paying
royalties to patent holders.

3. EXISTING SUPPORT FOR IMPLEMENTING
H.264

H.264 is described in a huge standard document [1],
whose several versions exist. This of 3/2005 amounts
343 pages, whereas that of 11/2007 consists of 564 pages,
which is mainly because of adding the SVC extension.

Fig.1 – General scheme of the H.264 codec.
Especially for non-experts in the field of video coding,

the document is very difficult to read and interpret,
because it is not only complex but also written in a very
peculiar manner. All information necessary to create
interoperable software or hardware is provided, but there
are no suggestions how to implement it. Especially, there
is no word about the encoding process: only the bitstream
format and decoding process are specified using text,
tables and C-like pseudocode.

The document is hardly useful even for implementing
a H.264 decoder, because of far-reaching formalism,
widely-used cross-referencing, and the complexity of the
standard itself, which is manifested by a huge number of
options, definitions, and variables. Even the pseudocode
cannot be directly used as a basis for a solution, as it
describes only bitstream parsing, while decoding is
presented by means of text. Most of variables are not
clearly defined, so that their meanings and data types
must usually be deduced from several fragments of text.

As to document versions, it should be noted that apart
from adding extensions and correcting bugs, changes are
made in the whole text. In practice, this makes it
impossible to easily switch from one publication to
another. Moreover, some modifications are not well
documented, e.g. in the version 11/2007, the residual
colour transform has been removed without explicit
notification.

Careful following even subtle changes of the standard
is a must that makes development even more difficult. In
order to be up to date, designers must observe activities of
the JVT (which makes publicly available some draft
documents and reports on meetings) or, even better, to
participate in their works. Either approach is acceptable
only for big companies.

In order to help developers, the standard is supported
with a reference software [9, 10], which is developed by
the JVT. It is called the Joint Model (JM) and consists of
both encoder and decoder written in the C language. They
allow custom standard implementations to be validated,
provide encoding statistics and video quality assessment,
but are not very helpful in developing hardware or
software.

The huge piece of code (over 50000 lines) is neither
well documented nor organized. Only a user guide is
provided, not thorough design documentation. Comments

206

are placed sparingly, and abbreviated identifiers are
unclear. Pointers, type casting, and global variables are
widely used, which makes debugging difficult. The code
is also far from a clear object-oriented design, even if it is
modularized by grouping related routines into separate
files. It is also not optimized for performance.

At the time of writing these words, the version 15.1 of
the JM is accessible. Frequent updates are limited to
adding extensions and fixing bugs. The code seems not to
be refactored in order to improve its quality. In [5], it is
explained that this is a consequence of the politics the
JVT selected to develop the standard. Every proponent of
an option or extension, after proving its usefulness and
then finding acceptance, must integrate it with the
existing reference software. Obviously, he has no interest
in improving someone else’s code, the more so because
the result will be available to everybody for free, whereas
a good implementation of H.264 still has commercial
value for many companies.

Because of all of these, understanding the reference
software and taking its advantage are very difficult even
for experienced programmers. It is even problematic to
extract data from key points of processing pipeline, which
is necessary for verification purposes. Detailed tracing of
bitstream contents is supported, but accessing data of the
algorithm core requires code modification, which is not
easy for the reasons mentioned above.

It should be emphasized that our opinion about the
reference code conforms those of other developers, which
are reported over the Internet [11, 12].

Internet forums and mail-lists, like [11] or [12] are
good sources of interesting information for a developer.
They are active, moderated by practitioners, and contain
a lot of knowledge in the form of brief messages, free of
embellishments. Others' experiences and advices are very
useful in understanding standard nuances, explaining
doubts, solving problems and planning development.

Another noteworthy fact is that there exist initiatives
to develop open-source H.264 software: x264 [13] and
libavcodec [14]. Even though they outperform the JM in
terms of performance, it is also hard to consider them as
a good and reliable basis for developing own hardware
solutions. Firstly, they as well as the JM lack both object-
oriented design and in-depth documentation. Secondly,
they are not very credible in terms of both standard
conformance and development life-cycle: some options
can be omitted in order to simplify design, and similar
initiatives often became inactive even before reaching
a mature state.

The journal papers [1-5] and book [6] about H.264
seem the best basis for beginning high-level design of
a decoder. They describe main principles, which is
sufficient to identify main classes and methods. Neither
the standard document nor reference software are helpful
in this regard, but they are an invaluable source of
technical details and nuances when switching to coding.
The document is more useful in implementing
subalgorithms, whereas the reference software allows for
testing them and explaining doubts.

As to testing, there are some analyzers of H.264
streams, like H264Visa [15], but from our point of view
they have clear disadvantages. First of all, they offer only
limited access to interesting points of the decoding

pipeline. Some data can be viewed via GUI, but there is
no mechanism to automatically translate them into a form
suitable for verification. As such programs are provided
without source code, it is impossible to extend them to
satisfy our needs. Additionally, they come at significant
prices and require Microsoft Windows, so that cannot be
run on Linux.

Putting together the above facts, we can conclude that
existing support for implementing H.264 is quite
extensive but very inconsistent and difficult to use. There
are no ready-to-use patterns, universal tools, and explicit
design insights. In order to develop a really efficient
hardware decoder in a reasonable time and without much
investment, one must develop his own architecture, work
methodology, and software tools.

Thus far our team worked mainly in the fields of
speech coding and enhancement [16, 17], so that we had
no much earlier experiences with video codecs.
Developing dedicated software in parallel to hardware
was a mean to gain more practical knowledge about video
processing and to avoid bad decisions at hardware design.

4. JAVA AS A TOOL FOR IMPLEMENTING H.264
Implementing from-the-scratch such an advanced

algorithm as H.264 is a challenging task. In order to focus
only on architectural issues, it is important to avoid
problems with development and coding, in which
advanced tools are helpful [18, 19]. In particular, high
productivity is mainly related to early detection of bugs
or, even better, to preventing them from arising. Apart
from desiring functionality, we expect tools to be
accessible free-of-charge, well supported, and easy to use.

The conservative approach of using the C language is
widely considered as of poor productivity. A lot of care is
necessary to write a reliable code and make it portable,
even between Windows and Linux. Memory management
is left to a programmer, which distracts him from the
algorithm. Due to limited type safety, many bugs are
possible and usually difficult to detect, especially those
related to exceeding array bounds, type casting, and
pointers.

It is much better to use C++, which is a more
advanced language that well supports object-oriented
design. In spite of better type safety, errors of a wide
range are still possible, as pointer-based memory access
and management cannot be completely avoided.

Another approach is to generate code from
a schematic model, which is possible e.g. with Matlab-
Simulink. This completely prevents programming errors
but simultaneously make it difficult to customize and
extend the code obtained. Such tools are also expensive
and usually do not support well exporting projects or their
fragments to other development environments.

These facts have motivated us to develop H.264
software using Java: a language which recently focuses
attention of developers of real-time and embedded
systems [18-24].

Java has been developed in the mid-1990s by Sun
Microsystems with the aim of facilitating platform-
independent programming and improving productivity.
This modern object-oriented language has been equipped
with a lot of practical features such as threads, assertions,
built-in security, and automatic memory management.

207

Moreover, the Java Development Kit (JDK) is free and
comes with a huge set of libraries for different purposes:
from dynamic data structures and advanced string
manipulations to networking, Graphical User Interface
(GUI), or even multimedia [25]. Even an advanced Rapid
Application Development (RAD) environment, the
NetBeans, is provided.

Of course there are equivalent libraries and tools for
C/C++, but they are often costly and available as separate
items, so that much effort is necessary to configure and
maintain a developer workstation.

On the other hand, Java is more a technology than
just a language, which is sufficiently powerful and
universal to be useful in almost all applications, except
only those in which performance and memory usage are
critical. The latter is because Java portability has been
achieved by making the language interpreted.
Compilation results in hardware-independent byte code
which is run on the Java Virtual Machine (JVM). This
piece of software obviously represents some execution
overhead, which is additionally unpredictably affected by
garbage collection of automatic memory management.

Moreover, even though byte code is itself compact,
even simplified versions of the JVM need hundredths
kilobytes of memory, whereas taking advantage of rich
libraries requires megabytes. This is often unacceptable in
embedded applications.

In addition to these problems, the peculiarities of
a target platform often make porting the JVM to it
difficult or at least not economically justified. Even on
PC, we have observed incompatibility issues. Strange
errors sometimes occur if an application compiled for
some version of the JVM is run using an older one.

In spite of difficulties, Java advantages sustain the
interest in introducing Java to embedded and real-time
systems [18-24]. For example, Sun’s picoJava processor
and ARM9J with the Jazelle coprocessor are examples of
efforts to implement an efficient hardware-accelerated
JVM. On the other hand, programming techniques are
developed which allows for overcoming Java

limitations [21, 22]. Finally, the technology is extended to
satisfy specific needs of demanding applications.

Thus far, the main success of these efforts is the
popularity of the Java 2 Micro Edition (J2ME), a tailored
and thus lightweight programming platform for mobile
phones.

It should be emphasized that the aim of the present
work is to develop a software basis for implementing
a hardware H.264 decoder. We do not use Java in an
embedded system. Nevertheless, our results can obviously
serve for the latter purpose, so that such their utilization is
conceivable in the future, in the context of J2ME and Java
Media Framework (JMF) [25].

5. PROJECT RESULTS
Our project has reached the half-way point. The object

model of a H.264 decoder has been developed, as well as
a preliminary design of the corresponding hardware
architecture. Most of functionalities have prototype
software implementations. Parts of the decoder whose
code had reached a stable form and had been thoroughly
tested, have been implemented in FPGA. Interconnections
among functional units and memory as well as essential
control logic have also been developed, which is the first
step in assembling the final chip.

Especially, the parser, VLC decoding, and transform
blocks are nearly finished. What is important is that good
software prototypes allowed hardware engineers to
quickly understand which digital circuits are expected and
to construct them not only efficiently but also optimally,
i.e. high performance has been achieved at low resource
utilization. This will be described in future papers.

As to the software implementation, it consists of about
50 classes, which are shown in Fig. 2 as a Unified
Modeling Language (UML) diagram, which also presents
main relations between them. Most of classes can be
directly identified with hardware modules. Carefully
designed methods define control registers and state
changes.

Slice

DecodedReferencePictureMarking

ReferencePictureListReordering

IndexScanner4x4BlockPlane

SubmacroblockPrediction

IndexScannerBlockPlane

IndexScannerMacroblock

PictureParameterQueue

NeighbouringBlockInfo

MacroblockStructure

PredictionWeightTable

IntraPredictionMode ResidualBlock

IntraPredictor

IndexScanMode

PictureParameters

MacroblockQueue

MacroblockReport ParsingException

Plane

PlaneConstructor

MacroblockType

PredictionModeBlockStructure

SequenceQueue

VUIParameters

AccessMode

InterPredictor

IndexScanner

Macroblock

ScalingMode

Predictor

Transform

ScalingList

Prediction

Scaler

Sequence

Direction

NALType

Reporter

Picture ParserVLC

Type

NAL

Fig.2 – UML class-diagram of the object model of a H.264 decoder.

Most of classes have strictly determined numbers of instances. Obviously, there is only one stream parser and

208

one VLC decoding engine, whereas most of the remaining
blocks of Fig.2 must be tripled in order to decode luma
and both chroma components using separate pipelines,
which can efficiently work in parallel.

Knowing the number of objects of a particular class,
allows them to be preallocated as static fields and to exist
continuously during program execution. This significantly
reduces computational load related to memory
management and garbage collection. It seems that using
this technique is crucial for developing a Java-based
H.264 decoder that works in real time.

Another conclusion, which does not directly result
from the standard document, is that most of operations
can be performed without explicit integer multiplications.
The latter can widely be replaced with binary shifts,
possibly supplemented with additions.

As to data types, 16 bits (including sign) seem
sufficient to store variables related to decoding, but in
some cases, auxiliary results need 32 bits. Most of data
represented in the standard document using tables of
integer numbers can be efficiently packed into compact
bit strings, which conserves resources.

Internal variables of decoding pipelines take not so
much memory. Quantization tables and sample buffers for
transform and prediction purposes occupy most space, yet
it seems possible to incorporate them into a chip. The
main problem is in storing reference frames for inter-
prediction, which requires large out-of-chip memory.
Some of known decoders require encoders to limit the
number of reference frames depending on video
resolution and accessible storage space, and we will
probably employ this approach in our chip.

High fidelity extensions of H.264, in which samples
are represented using 10 or 12 bits, instead of the typical
8 bits, require specific memory architecture or wasting
space.

A notable result of the project is a platform-
independent diagnostic tool, which works in any
operating system equipped in the JVM, especially on
Linux. It reuses the code of the software decoder we have
developed, so that the latter can be tested and
demonstrated interactively via GUI. The tool consists of
two modules, whose main windows are shown in Fig.3
and Fig.4. The former allows H.264 streams to be
analyzed and restructured, in order to focus tests on
fragments that cause the decoder to fail. The second
module allows a single frame to be examined: decoding
correctness can be verified both visually and by following
dataflow step by step. The latter required a quite advanced
reporting mechanism to be developed, which can be
easily and consistently incorporated into decoder and
collects data in a synthetic form, so that they can be both
displayed on screen and exported to verification tools.

The reporting and verification functionalities still need
to be enhanced. Especially, filters are to be developed that
allow interesting information to be quickly extracted.
Another lacking option is automatic detection of
erroneously decoded frames in a long stream, and
macroblocks in a picture. Nevertheless, interactive testing
the programs support is sufficient in most cases.

Side-effects of our work are several applications that
demonstrate subalgorithms of H.264 and explain data
structures it uses. For example, Fig.5 shows the main

window of the tool that allows users to interactively study
Picture-Adaptive Frame/Field (PAFF) and Macroblock-
Adaptive Frame/Field (MBAFF) modes of accessing
image samples.

A final remark is that JavaDoc, a tool for generating
well-organized HTML documentation from source code
comments, whose effect is shown in Fig.6, has proved
itself to be a very useful and effective communication
means, which allowed software developers to impart their
knowledge to designers of hardware modules, without
producing many extra reports.

Fig.3 – GUI-based diagnostic tool: stream analysis.

Fig.4 – GUI-based diagnostic tool: picture analysis.

Fig.5 – A tool for demonstrating the PAFF and MBAFF
modes of sample access.

209

Fig.6 – Class documentation generated using JavaDoc.

7. CONCLUSION
Our case shows that having carefully selected tools

and building a suitable development methodology upon
them are essential for the success of a hi-tech project.
After analyzing possible approaches to H.264
development, we promote Java as both programming
language and entire technology that allows advanced DSP
algorithms to be prototyped with high productivity. Using
it we were able to quickly, in half a year, implement both
a software H.264 decoder and accompanying tools, even
though the team decided to do the work from scratch and
did not specialize in video processing. The well-
documented and well-organized code forms a basis for
developing a high-performance real-time hardware
implementation. The works are in progress, and results
are expected soon.

8. ACKNOWLEDGEMENT
This work was supported by Bialystok Technical

University under the grant W/WI/8/08.

9. REFERENCES
[1] ITU-T. ISO/IEC. ITU-T Rec. H.264 Advanced video

coding for generic audiovisual services / ISO/IEC
14496-10 MPEG-4 AVC. ITU. Geneva 2003. [On-
line]. Available: http://www.itu.int/rec/T-REC-H.264

[2] T. Wiegand. G. Sullivan. G. Bjontegaard. A. Luthra.
Overview of the H.264/AVC video coding standard.
IEEE Trans. Circuits Syst. Video Technol. 13
(7) (2003). p. 560-576

[3] D. Marpe. T. Wiegand. G.J. Sullivan. The
H.264/MPEG4 Advanced Video Coding standard and
its applications. IEEE Commun. Mag. 44 (8) (2006).
p. 134-143

[4] S.-k. Kwon. A. Tamhankar. K.R. Rao. Overview of
H.264/MPEG-4 part 10. J. Vis. Commun. Image R.
2 (17) (2006). p. 186-216

[5] R. Schäfer. T. Wiegand. H. Schwarz. The emerging
H.264/AVC standard. EBU Tech. Review 12 (2003)

[6] I.E.G. Richardson. H.264 and MPEG-4 video
compression. Wiley. Chichester, UK, 2003. p. 305

[7] C.S. Kannangara. Complexity management of
H.264/AVC video compression. PhD Thesis. The
Robert Gordon University, 2006

[8] Y. Chen. E. Li. X. Zhou. S. Ge. Implementation of
H.264 encoder and decoder on personal computers.
J. Vis. Commun. Image R. 17 (2006). p. 509-532

[9] H.264/AVC Reference Software. [Online]. Available:
http://iphome.hhi.de/suehring/tml/

[10] ITU-T. ISO/IEC. ITU-T Rec. H.264.2 Reference
software for H.264 advanced video coding / ISO/IEC
14496-5 MPEG-4 Reference software. ITU. Geneva
2001.

[11] Mailing list for x246 developers. [Online]. Available:
http://mailman.videolan.org/listinfo/x264-devel

[12] Mp4-tech mailing list. [Online]. Available:
http://lists.mpegif.org/mailman/listinfo/mp4-tech

[13] The FFmpeg libavcodec library. [Online]. Available:
http://ffmpeg.org

[14] x264, a free H.264/AVC encoder [Online]. Available:
http://www.videolan.org/developers/x264.html

[15] H264Visa. [Online]. Available: http://www.h264-
visa.com

[16] M. Livshitz. M. Parfieniuk. A. Petrovsky. Wideband
CELP coder with multiband excitation and multilevel
vector quantization based on reconfigurable
codebook, Digital Signal Process. (OOO "KBWP",
Moscow, Russia) 2 (2005). p. 20-35

[17] A. Petrovsky. M. Parfieniuk. A. Borowicz. Warped
DFT based perceptual noise reduction system Proc.
116th AES Conv. Berlin, Germany, 8-11 May 2004.
Conv. Paper #6035

[18] J.A. Fisher. P. Faraboschi. C. Young. Embedded
computing: a VLIW approach to architecture,
compilers and tools. Morgan Kaufmann/Elsevier. San
Francisco, CA, 2005. p. 712

[19] J. Labrosse. et al. Embedded software: know it all.
Newnes/Elsevier. Oxford, 2007. p. 792

[20] C.D. Locke. P.C. Dibble. Java technology comes to
real-time applications. Proc. IEEE 7 (91) (2003).
p. 1105-1113

[21] P.C. Dibble. Real-time Java platform programming.
Prentice-Hall. Englewood Cliffs, NJ, 2002. p. 352

[22] A. Wellings. Concurrent and real-time programming
in Java. Wiley. 2004, p. 446

[23] J. Baker. A. Cunei. C. Flack. F. Pizlo. M. Prochazka.
J. Vitek. A Real-time Java Virtual Machine for
avionics: an experience report. Proc. 12th IEEE Real-
Time Embedded Technology Appl. Symp. (RTAS). San
Jose, CA, 4-7 April 2006, p. 384-396

[24] A. Wellings. A. Burns. Real-time Java. in Handbook
of real-time and embedded systems. Ed: I. Lee. J.Y.
Leung. S.H. Son. Chapman & Hall/CRC. Boca
Raton, FL, 2008. p. 12-1–12-19

[25] R. Gordon. S. Talley. Essential JMF: Java Media
Framework. Prentice Hall. Upper Saddle River, NJ,
1999

210

