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Abstract: The reliability of Multi-State System (MSS) is 

analysed in this paper. In a MSS, both the system and its 

components may experience more than two reliability 

states. Many practical and theoretical problems needs 

still to be solved in this area. One of the crucial ones is to 

identify how a change in a state of an individual 

component or changes in states of several ones affect(s) 

the system reliability. The Multiple-Valued Logic (MVL) 

tools are employed for handling this problem in this 

paper. In the paper the structure function and Logical 

Differential Calculus of MVL function are combined to 

evaluate the dynamic behaviour of a MSS. The Logical 

Differential Calculus extends potentialities of structure 

function tool to analyse also the MSS dynamical 

properties. The evaluation of MSS components changes is 

considered in this paper. 

Keywords: Reliability Analysis, Multi-State System, 

Importance measure, Dynamic Reliability Indices (DRI) 

1. INTRODUCTION  

As a rule reliability is considered as one of important 

measures for technical systems. There are many methods 

for reliability analysis of these systems. Evolution of 

these methods allows to estimate different types of 

systems such as economical, financial, social and etc [1 – 

3]. But in some tasks new type system caused 

implementation of new methods of reliability analysis. 

Therefore two problems arise: firstly, it is adaptation 

methods of reliability analysis of technical system to any 

type system; secondly, it is interpretation of initial real-

world systems as one of mathematical model in reliability 

analysis. From the point of view of reliability analysis a 

system is interpreted as one of four basic mathematical 

models (Fig.1).  
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Fig. 1. –  Classification of mathematical models in reliability 

analysis 

These models are alternative and are used according to 

initial conditions. They are classified by level of 

availability (reliability) and type of depicted function. The 

function for description system model can be discrete or 

continuous. Function type causes mathematical approach 

for system reliability analysis [4, 5]. There are two types 

of these models dependent of level availability and 

reliability: Binary System and Multi-State System (MSS). 

In the most studied model to which are investigated, 

system and system component can take on one of two 

states: failure or functioning. This model is named 

Binary-State System. Many problems for these systems 

have been settled. But this approach fails to describe 

many situations where the system can have more than two 

distinct states [4, 6, 7]. MSS has proposed alternative 

decision system for reliability analysis. In a MSS, both 

the system and its components may experience more than 

two states, for example, completely failed, functioning 

and perfect functioning. The MSS is frequently required 

for applied problem. This model has been exploited in 

Reliability Analysis more 30 years [8].  

There are different tools for a MSS reliability 

estimation [4, 6 - 8]. For example, Markov processes are 

used to analyze the system state transition process [6] or 

the structure function approach is used to investigate the 

system topology [4, 9, 10]. We have been developed 

structure function tool for computation system reliability 

measures. One principal problem in MSS reliability 

analysis is how to infer the effects of state changes of 

each individual component upon the system reliability [4, 

6 – 9].  

We propose method on the basis of structure function 

to estimate the dynamic properties of the MSS reliability 

evolving results proposed by Boedigheimer and Kapur [9]. 

In paper [11] basic and theoretical concepts of this 

approach have been determined and Dynamic Reliability 

Indices (DRIs) have been proposed as measures of MSS 

reliability. These indices are used to estimate changes of 

system reliability caused by changes in the states of its 

components [11 - 13]. DRIs are computed based on MSS 

structure function and Logical Differential Calculus of 

Multiple-Valued Logic (MVL). These indices are one of 

importance measures for MSS []. 

Proposed method a MSS estimation by DRIs is 

independent of initial type system and can be applied for 

reliability analysis different system that primary 

interpreted as discrete MSS. In this paper basic 

conception of the MSS reliability analysis based on DRIs 

and some examples of this method application are 

considered. 

2. MSS STRUCTURE FUNCTION 

The structure function declares a system reliability 

depending on its components states [4, 7, 11 - 13]: 



(x1, …, xn) = (x): {0, …, m-1}
n
  {0, …, m-1} (1) 

where (x) – system reliability (system state), xi – 

components state (i = 1, …, n), n –  number of system 

components, m – discrete levels of reliability for system 

and its components (m = 0, …, m-1): zero correspond to 

complete failure of system or its components and (m-1) is 

perfect functioning of MSS or its components. 

The component probability characterizes every system 

component state xi form zero to (m-1): 

}{Pr
, iisi

sxp
i

  (2) 

where i = 1, …, n     and     si = 0, …, m-1. 

These assumptions for structure function in 

reliability analysis of MSS are used [4, 6, 7, 11]: (a) the 

structure function is monotone and (s)=s (s{0, …, m-

1}); (b) all components are s-independent and are relevant 

to the system; (c) the structure function (x) (1) is 

interpreted as a MVL function. Last allows applying 

MVL mathematical tools for reliability analysis of the 

MSS. 

Consider approach of Direct Partial Logic Derivatives 

of MVL function for reliability analysis of MSS. This 

approach is part of Logical Differential Calculation. There 

are two types of these derivatives: with respect to one 

variable and with respect to variables vector [12]. The 

first type permits to examine the influence of one variable 

change to modification of MVL function value. The 

second type of derivative reveals MVL function value 

changes depending on changes of some function 

variables. So the second type of derivatives is 

generalization of the first type Direct Partial Logic 

Derivatives with respect to one variable.  

A Direct Partial Logic Derivatives of a structure 

function (x) of n variables with respect to variables 

vector x
(p)

 = (xi1
, xi2

, …, xip
) reflects the fact of changing 

of function from j to h when the value of every variable of 

vector x
(p)

 is changing from a to b [5]: 

(jh)/x
(p)

(a
(p)
b

(p)
) = 

=
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where ),...,,,,...,(),,,(
11 1 niiii

xaaxaa
pp

  x  and 

),...,,,,...,(),,,(
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jj ii

ba ,   {0, …, 
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These derivatives for structure function of MSS in 

more details are considered in papers [11, 12]. 

In (3) a change of value of ij-th variable 
ji
x  form a to 

b agrees with a change of MSS component efficiency 

form a to b. So, changes of some components states 

correspond with change of a variables vector x
(p)

 = (xi1
, 

xi2
, …, xip

). Every variable values of this vector changes 

form a to b. So, vector x
(p)

 can be interpreted as 

components states vector or components efficiencies 

vector. 

For example, consider MSS 2-out-of-3 with three 

states of reliability (m=3). This system consists of three 

components (n=3) and works if two or more system 

components are function. The structure function of this 

MSS is: 

(x) = (x1 x2)  (x2 x3)  (x1 x3). (4) 

The structure function of MSS 2-out-of-3 and its 

Direct Partial Logic Derivative (01)/x 1(02) are 

in Table 1. 

 
Table 1. The example of the structure function of  MSS  2-

out-of-3 and the Direct Partial Logic Derivative 

x1x2x3 (x) (01) 

x1(02) 

x1x2x3 (x) (01) 

x1(02) 

x1x2x3 (x) (01) 

x1(02) 

0 0 0 0 0 1 0 0 0 - 2 0 0 0 - 

0 0 1 0 2 1 0 1 1 - 2 0 1 1 - 

0 0 2 0 0 1 0 2 1 - 2 0 2 2 - 

0 1 0 0 2 1 1 0 1 - 2 1 0 1 - 

0 1 1 1 0 1 1 1 1 - 2 1 1 1 - 

0 1 2 1 0 1 1 2 1 - 2 1 2 2 - 

0 2 0 0 0 1 2 0 1 - 2 2 0 2 - 

0 2 1 1 0 1 2 1 1 - 2 2 1 2 - 

0 2 2 2 0 1 2 2 2 - 2 2 2 2 - 

 

Direct Partial Logic Derivatives permit describe 

every change of MSS depending of component 

efficiencies changes. But system failure and repair is 

more important for real-word system. 

The MSS failure is represented as the changing of 

the function value (x) from j into zero and as decrease of a 

system components efficiencies vector x
(p)

 from a
(p)

 to b
(p)

: 

(j0)/x
(p)

(a
(p)
b

(p)
), }1,...,0{,  mba

jj ii
, 

jj ii
ba  , j = 

1,…, p. Because the structure function is monotone 

(assumption (a)) the MSS failure is declared by a change 

function (x) from “1” into zero and decreases of every of p 

system components availability from 
ji

a  to )1( 
ji

a : 

(10)/x
(p)

(a
(p)


(p)
a~ ), (5) 

where ))1(),...,1(()~,...,~(~
11


pp iiii

aaaa(p)
a  and 

)}1(,...,1{  ma
ji

. 

The MSS repair for replacements of failed system 

components is defined in papers: 

(0h)/x
(p)

(0(m-1)), (6) 

where h{1, …, m-1}, )0,...,0( 
p

0  and 

))1(),...,1((
  

p

mm 1)(m . 

In this case the efficiency of p failed system 

components changes from zero into (m-1). Therefore the 

elements of variable vector x
(p)

 change from zero into (m-

1) and the structure function value changes from zero into 

h ((x): 0  h) in (6).  

There is another variant of MSS repair, where failed 

components don’t replacement and change state from zero 

into levels }2...,,1{  mb
ji

 (j = 1, …, p) by renewal of 

failed components: (0h)/x
(p)

(0b
(p)

). But in this 

paper we examine the first variant of MSS repair that is 

caused by failed components replacement. 

In this paper we investigate the influence of state 

changes of more than one component to the system 



reliability by Direct Partial Logic Derivatives. MSS 

failure and MSS repair caused by changes of some 

components efficiency are defined in Direct Partial Logic 

Derivative terminology. 

3. DYNAMIC RELIABILITY INDICES 

DRIs are probabilistic indices and include two groups: 

Component Dynamic Reliability Indices (CDRIs) and 

Dynamic Integrated Reliability Indices (DIRIs). CDRIs 

allow measuring an influence of each individual 

component or a fixed group of components to the system 

reliability. A point of view of system reliability the 

unstable components are determined by these indices. 

DIRIs characterize a probability of impact of one or some 

of system components to the system reliability.  

Definition 1. CDRIs for a MSS failure are probability 

of this MSS failure that is caused by p system components 

efficiencies decrease [5]. These indices are calculated as: 

  



p

j

aiff jj

pρP
1

,1
)( (p)

x , (7) 

where f – number of system states when the value of 

variables vector x
(p)

 of MSS structure function changes 

from a
(p)

 to 
(p)

a~  and forces the system failure (5): 

fρ    (10)/x
(p)

(a
(p)


(p)
a~ )  0, (8) 

1 – number of system states for which (x)=1 and 

jj ii
ax   (j =1, …, p); pi

j
,a

j
 – component state probability 

in (2). 

Definition 2. CDRIs for a MSS repair are 

probability of this MSS repair that is caused by 

replacements of p failure system components [5]. An 

equation for computation of these indices is: 
















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rr j

pP
1

0,0

1

1

)()( (p)
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where )(h

r
ρ  –  number of system states when the vector x

(p)
 

value change from zero to (m-1) forces the system repair 

and is calculated by Direct Partial Logic Derivative (6): 

)(h

r
ρ     (0h)/x

(p)
(0(m-1))  0, (10) 

0 –  number of zero system states ((x) = 0 and 

0
ji

x for j =1, …, p), pi
j
,0 = probability of component 

state that are declared in (2). 

Definition 3. DIRIs is probability of the system 

failure or repairing if one of system component fails or 

restores: 

 



1

)(1)(
z

f

z

ff
PPP (p)(p)

xx , (11) 

 



1

)(1)(
z

r

z

rr
PPP (p)(p)

xx , (12) 

where Pf(x
(p)

) and Pr(x
(p)

) – probabilities that are 

determined in (7) and (9) accordantly; x
(p)

 – the variable 

vector of p variables for which x
(p)

  x
(p)

; z –  number of 

combinations of n things taken p, that determines number 

of variables vector x
(p)

 for the structure function of MSS 

which consist of n components. 

Let's calculate CDRIs and DIRIs for the 2-out-of-3 

MSS for m=3 (Table 1). The probabilities of the 

component state (2) are declared in Table 2. 

Derivatives  (10)/xi(10)  for the system failure 

and (01)/xi(02),   (02)/xi(02)   for the 

system repair (i = 1, 2) are calculated firstly. Then 

numbers f and numbers )(h

r
ρ  for h = {1, 2} are 

determined in Table 3. The numbers 
1

  and 0  are 

calculated by structure function: 0  = 5, 1  = 7. The 

CDRIs for this MSS 2-out-of-3 is calculated by (7) and 

(9) and are presented in Table 3. 

Table 2. –  Component state probability 

 State 

Component 0 1 2 

x1 0.1 0.6 0.3 

x2 0.4 0.5 0.1 

x3 0.2 0.2 0.6 

Table 3. –  CDRIs calculation for the MSS 2-out-of-3 

 x1 x2 x3 

f 4 4 4 
)1(

r
ρ  2 2 2 

)2(

r
ρ  2 2 2 

Pf(i) 0.185 0.154 0.

062 

Pr(i) 0.058 0.230 0.

116 

 

The analysis of Table 3 is shown. The 1-st component 

is cause the system failure at most because the CDRIs for 

this component Pf(1)=0.185 is the largest. The probability 

of the system failure after the failure of the 3-rd 

component is minimum (Pf(3)=0.062). The 2-nd 

component permits to repair the system by highest 

possible probability Pr(2)=0.230. 

DIRIs for this MSS (11) and (12) are: the probability 

of the system failure when a change in the state of one of 

the component that is Pf=0.308 and the probability of the 

MSS repairing above by replacement of the failure 

component that is Pr=0.315. 

4. APPLICATION OF DRIs  

Consider some examples of a MSS analysis by CDRIs 

and DIRIs. The first example presented application of 

DRIs in Human Reliability Analysis. In paper [15] the 

examination of human errors by these indices is in more 

detail. 

Example 1. In paper [15] considered system 2-out-of-

3:G (Fig.2) with hardware failure events Ci and 

consecutive human errors events Hi (I = 1, 2, 3). The 

system fails if two or more trains (events Ci and Hi) fail. 
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Fig. 2. –  A system with hardware failure events Ci and 

consecutive human errors events 

The system includes 6 components with 3 level of 

availability (the probabilities of components states are in 

Table 4) and declared by structure function: 

(x) = x1x4 x2x5  x1x4 x3x6  x2x5 x3x6. (13) 

Table 4. Component state probability for system in Fig.2 

(m=3) 

State 

Component 

x1 

(C1) 

x2 

(C2) 

x3 

(C3) 

x4 

(H1) 

x5 

(H2) 
x6 

(H3) 

0 0.03 0.03 0.03 0.12 0.26 0.17 

1 0.28 0.28 0.28 0.26 0.26 0.20 

2 0.69 0.69 0.69 0.62 0.48 0.63 

Consider this system failure depending on human 

error events. These events agree with variables x4, x5 and 

x6 in structure function (13). CDRIs for these variables 

(events) are: 

Pf(x4) = 0.131024, Pf(x5) = 0.179310, Pf(x6) = 0.068376. 

Therefore the maximal probability of the system 

failure correspond to event H2 and it is Pf(x5) = 0.179310. 

Consider this system failure depending on breakdown 

or availability decrease of two system components if one 

of events is human error (Hi). These CDRIs for the system 

are in Table 5.  

Table 5. CDRIs of the system in Fig.2 failure 

Components Components changes  CDRI Pf(x
(p)

) 

xi xj xi xj 

x1 x4 1  0 1  0 0.043955  

x1 x4 1  0 2  1 0.104815  

x2 x4 1  0 1  0 0.072800  

x2 x4 1  0 2  1 0.104815  

x3 x4 1  0 1  0 0.072800  

x3 x4 1  0 2  1 0.104815  

x1 x5 1  0 1  0 0.072800  

x1 x5 1  0 2  1 0.057191  

x2 x5 1  0 1  0 0.056000  

x2 x5 1  0 2  1 0.103385  

x3 x5 1  0 1  0 0.072800  

x3 x5 1  0 2  1 0.086563  

x4 x5 1  0 1  0 0.067600  

x4 x5 1  0 2  1 0.053106  

x4 x5 2  1 1  0 0.097328  

x4 x5 2  1 2  1 0.000000  

x1 x6 1  0 1  0 0.032000  

x1 x6 1  0 2  1 0.100800  

x2 x6 1  0 1  0 0.056000  

x2 x6 1  0 2  1 0.100800  

x3 x6 1  0 1  0 0.040727  

x3 x6 1  0 2  1 0.128291  

x4 x6 1  0 1  0 0.029714  

x4 x6 1  0 2  1 0.093600  

x4 x6 2  1 1  0 0.052766  

x4 x6 2  1 2  1 0.000000  

x5 x6 1  0 1  0 0.052000  

x5 x6 1  0 2  1 0.093600  

x5 x6 2  1 1  0 0.018732  

x5 x6 2  1 2  1 0.000000  

 

The main area of applications in mind for the results 

has been the unavailability analysis of redundant standby 

safety systems that are periodically tested, calibrated or 

maintained. The probabilities obtained here are relevant 

input to system models. The current formalism applies 

also for calculating the probability of a plant transient 

(initiating event) if such is caused by repeated operator 

errors. 

In paper [16] the reliability analysis of logical 

networks and logical gates by DRIs is presented. Next 

example illustrates this application of DRIs. 

Example 2. Consider the logical network (n = 3) in 

Fig. 3 that is declared by logical function: 

F(y1, y1, y2,) = F(y) = y1y2,  y1y2 (14) 
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b) 

Fig.3. – Logical network (a) and graphical interpretation of 

its structure function by Block Diagram 

The structure function is different form logical 

function F(y) that is realized by logical network. The 

structure function describes the topology of a logical 

network and can be equal to logical function F(y) in some 

time [16, 17]. 

In this example the structure function of the logical 

network is: 

(x )  = (x1  x2) x3. (15) 

Consider this network as MSS of three components (n 

= 3) with three levels of components availability (m = 3). 

The probabilities of components states are in Table 6. 

Table 6. Component state probability for bridge MSS (m=3) 

State 
Component 

x1 x2 x3 

0 0.03 0.12 0.03 



1 0.28 0.26 0.26 

2 0.69 0.62 0.71 

 

CDRIs for repair estimation of this logical network are 

in Table 7.  

Table 7. CDRIs for the logical network repair that is caused 

by replacement of failed components  

Components CDRI Pr(x
(p)

) 

x1  0.460000 

x2  0.413333 

x3  0.710000 

x1 x2 0.427800 

x1 x3 0.489900 

x2 x3 0.440200 

 

Therefore probabilities of the logical network 

restoration are in Table 7 for replacement of failed gate or 

two failed gates. 

The last example illustrates analysis of social system 

reliability. 

Example 3. Consider the system (Fig.4, a) with two 

working groups: (x1, x4) and (x2, x5). Every of these 

groups has one communication language. It is English for 

the first group (x1, x4) and it is Russian for the second 

group (x2, x5). There is the interpreter in this system (x3). 

Every working group includes programmer (x1) and (x2) 

and economist (x4) and (x5). In paper [2] the similar 

system is interpreted as “bridge” system (Fig.4, b). 
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Fig. 4. –  Example of the social system (a) and its 

interpretation in terms of MSS reliability analysis (b) 

Consider this system as the MSS (m = 4) with 5 

components (n = 5). The structure function of this MSS 

is: 

(x )  = x1 x2  x1 x3 x5  x4 x5  x4 x3 x2, (16) 

The probabilities of components states are in Table 8. 

DIRIs for this system failure are calculated by (11) 

and CDRIs are determined according to (12). CDRIs for 

this system are: 

Pf(x1) = 0.100892, Pf(x2) = 0.079873, Pf(x3) = 0.030265, 

Pf(x4) = 0.050446, Pf(x5) = 0.088280 

and are in Table 9 for two and three components break.  

 

Table 8. Component state probability for bridge MSS (m=4) 

State 
Component 

x1 x2 x3 x4 x5 

0 0.03 0.12 0.03 0.02 0.02 

1 0.24 0.19 0.19 0.12 0.21 

2 0.29 0.28 0.31 0.37 0.3 

3 0.44 0.41 0.47 0.49 0.47 

 

Table 9. CDRIs for the bridge MSS failure that is caused by 

breakdowns of two and three system components for MSS 

with m=4 

p = 2 (two system 

components breakdowns) 

p = 3 (three system 

components breakdowns) 

Components 
CDRI Pf(x

(p)
) 

Components CDRI 

Pf(x
(p)

) x i  x j  x i  x j  x s  

x1 x2 0.026600  x1 x2 x3 0.005054  

x1 x3 0.024873  x1 x2 x4 0.005472  

x1 x4 0.032989 x1 x2 x5 0.009576  

x1 x5 0.028800 x1 x3 x4 0.005472  

x2 x3 0.019691  x1 x3 x5 0.009576  

x2 x4 0.014924  x1 x4 x5 0.006048  

x2 x5 0.039900  x2 x3 x4 0.004332  

x3 x4 0.012436  x2 x3 x5 0.007581  

x3 x5 0.021764  x2 x4 x5 0.004788  

x4 x5 0.014700  x3 x4 x5 0.002793  

 

The MSS failure will be most possible if the first and the 

fourth components or the second and fifth components break 

down, because in this case CDRIs have maximum values 

Pf(x
(2)

) = Pf(x1, x4) = 0.032989 or Pf(x
(2)

) =Pf(x2, x5) = 

0.039900. 

The first, the second and the fifth components fail or 

the first, the third and the fifth components break have 

maximal influence to the failure of investigation system: 

Pf(x
(3)

) =Pf(x1, x2, x5) = 0.009576 and Pf(x
(3)

) =Pf(x1, x3, x5) 

= 0.009576. 

Therefore, DIRIs for MSS failure are Pf = 0.191297 if 

two system components fail and Pf = 0.057497 if three 

system components fail. 

5. CONCLUSION 

In this paper a method for MSS reliability analysis and 

its application is considered. This method allows to 

estimate MSS reliability based on DRIs. The DRIs reveal 

changes of some efficiency of system components and the 

influence of these changes on the system reliability. These 

indices are similar to importance measure [14]. 

Comparison the DRIs and others importance measures are 

considered in paper [18]. But mathematical approach for 

estimation of MSS reliability by DRIs is universal and 

can be used for different real-world system. It illustrates 

examples for application of MSS reliability analysis by 

the DRIs in this paper. Note the CDRIs and DIRIs can be 

used for reliability (availability) estimation of different 

types systems, for example, technical or social.  
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