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Abstract: We present a principled approach for cursive 

handwriting recognition which builds upon handwriting 

generation models. According to such models 

handwriting is a learned complex motoric task which is 

accomplished by sequencing simpler movement called 

stroke. As learning proceeds in human, so does fluency, 

which results in producing similar sequence of strokes in 

correspondence of the same sequence of letters. Such 

invariants represents therefore the basic drawing units to 

which an interpretation can be associated. Recognition is 

then achieved by detecting the invariants used to produce 

the word to be recognized, associating to them their 

interpretations, and eventually concatenating the 

interpretations along the ink of the word. Experiments on 

on-line data of the current implementation are reported 

and discussed to show the effectiveness of the method.  

Keywords: handwriting recognition, handwriting 

generation, saliency, sequence matching. 

1. INTRODUCTION 

Studies on handwriting generation have shown that 

handwriting is produced through a perception/action cycle 

involving attentive vision, learning and movement [1,2]. 

The complex movements needed to generate handwriting 

result from concatenation of elementary movements, each 

aiming at a time-varying spatial target. Fluency, then, 

emerges when proper time superimposition of successive 

elementary movements is achieved through learning. 

Time superimposition of strokes result in anticipatory 

effect in the actual drawing, so that group of strokes with 

whom the writer is familiar with, we called invariants, are 

“embedded” into a single sequence, which is drawn 

without any feedback, as in case of “elementary” writing 

movements. Then, complex handwriting, such as 

character or cursive words results from spatial 

superimposition of the corresponding invariants. 

Invariants are produced by learning a complex motor task, 

therefore different individuals develop different 

invariants, even when the same models are used during 

the learning.  

According to those findings, we have proposed to 

achieve cursive recognition by detecting the invariants 

embedded in the handwriting and then associating the 

invariant’s interpretations to the unknown word. We 

assume that a set of words is available in electronic ink, 

that each word has been segmented into strokes, and that 

each stroke has been labeled with the character it belongs 

to in that word. Accordingly, each word of this set, called 

reference set, is associated with a string of as many 

symbols as the number of strokes presumably used to 

produce the handwriting. Since the invariants may 

correspond to part of a character, or a sequence of them, 

the same invariants may be embedded into different 

words, thus to a different string. Thus, many partial 

interpretations may be produced and the final 

interpretation is achieved by ranking the strings 

corresponding to the invariants extracted from the word, 

sorting them along the writing direction into a directed 

graph, where node correspond to the invariants and arcs 

to possible connections between successive invariants, 

and eventually searching for the best paths in the graph. 

In the following, Section 2 illustrates the stroke 

segmentation, Section 3 the algorithm to perform ink 

matching and interpretation, and Section 4 describes how 

the interpretations are combined to provide the word 

corresponding to the unknown ink. Section 5 reports the 

result of experiments on the Unipen on-line dataset, while 

discussion of the results and concluding remarks are left 

to Section 6. 

 

2. FROM INK TO STROKES 

As mentioned in the Introduction, the first step of our 

approach is devoted to extract from the ink the strokes, 

i.e. the elementary movement used by the writer to 

produce the cursive. It has been shown that such 

elementary movements correspond to elementary shape 

[3, 4], and straight segments and arcs of circle have been 

widely used as the set of basic writing units, while the 

process of decomposing the input trace into a set of 

suitable shape primitives has been reformulated as a curve 

fitting problem, where segments and arcs of circle are the 

primitives to fit within the original curve [5]. This 

approach is very appealing because, by using the 

arclength representation of the points corresponding to the 

input trace, the curve fitting problem can be reduced to 

that of approximating a set of points by means of straight 

segments [6]. Many curve fitting strategies have been 

proposed in the literature, which have proved their 

effectiveness in a number of applications. Unfortunately, 

in case of on-line handwriting, these strategies do not 

allow to obtain satisfactory results. In fact, independently 

on the algorithm used to perform the fitting, the attainable 

decompositions generally exhibit a very large variability. 

This behaviour can be explained considering that the 

points are collected by the input device with uniform time 

sampling: this implies that changes in the writing speed, 

either due to noise or exhibited in correspondence of 

curvature variations, produce changes in the density of the 

points and local distortion along the line. This effect is 

particularly undesirable because curvature variations 

typically occur in regions where two successive strokes 

interact. As a consequence, the obtained decompositions 

result extremely sensitive to non significant shape 

variations of the trace that frequently occur in proximity 

of those interacting regions. 

To tackle this problem, we have proposed a 

decomposition method which exploits the concept of 

saliency used to model attentive vision in primate visual 

system [7] and that proved to be much more invariant 

with respect to non-significant shape variations or 
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changes in the writing speed. The method is based upon a 

multi-scale representation of the original curve, obtained 

through a frequency analysis of the discrete-time 

sequences x(n) and y(n), representing the (x,y) 

coordinates of the points collected by the input device. To 

this aim, we compute the Discrete Fourier Transform X(n) 

and Y(n) of the sequences x(n) and y(n), and then apply 

the Inverse Discrete Fourier Transform to the first T 

elements of the sequences X(n) and Y(n): the smaller the 

value of T, the coarser the approximations of the curve, 

while the opposite is true for values of T close to n. In 

practice, at each scale, we obtain a smoothed version of 

the original curve containing a smaller number of points. 

This multi-scale representation is then used to build a 

saliency map to highlight the so called “focus of 

attention”, i.e. the regions of the image representing 

salient information for the application at hand. In our 

case, those “focus of attention” are the points of the 

original curve in which significant curvature variations 

are recorded at different scales, and therefore represent 

the desired decomposition points [8]. Fig 1c) show the 

results of the segmentation on the word of fig. 1b). The 

final description of the handwriting shape is given in 

terms of a sequence of strings, each encoding the 

curvature changes relative to each stroke. To this aim, the 

actual values of the curvature are quantized into 16 

intervals and each interval encoded by one of the letter of 

the subset [A-P] in such a way that the letter A 

corresponds to the first interval (from 0 to 2π/16), the 

letter B to the second one (from 2π/16 to 2*2π/16) and so 

on. By this encoding, the shape of the word is described 

by a string of labels that encodes the local curvature of the 

selected smoothed representation of the original signal . 

3. FROM STROKES TO INVARIANTS 

As mentioned in the Introduction, generation models 

suggest that handwriting is composed of strokes that are 

drawn one after the other, and that the fluency emerges 

from the time superimposition of strokes. In other words, 

as the writer becomes familiar with a given word, he 

knows how long it takes to draw a stroke and where it will 

finish, so that the next stroke can be initiated before the 

current one is completed. As a consequence, group of 

strokes with whom the writer is familiar with are 

“embedded” into a single sequence, which is drawn 

without any feedback, as they were “elementary” writing 

movements. Thus, words are obtained by concatenating 

such handwriting invariants. Accordingly, cursive 

handwriting recognition can be achieved by detecting 

those invariants in a set of reference words, associating to 

each of them an interpretation (in terms of the ASCII 

code corresponding to the characters the invariant is 

meant to encode), matching the unknown words with the 

the reference words to extract the invariants and 

eventually concatenating the invariants ASCII code.  

In order to extract the invariants, we aim at further 

exploiting saliency-based method in order to find similar 

pieces of ink between two cursive words. The rationale 

behind this choice is similar to the one behind our 

approach to segmentation: by evaluating the similarity at 

different scales and then combining this information 

across the scales, we expect that sequence of strokes that 

are “globally” more similar than other to stand out in the 

saliency map. The “global” nature of the saliency 

guarantees that its map provides more reliable estimation 

of ink similarity with respect to that provided by “local” 

criteria, as it is usually proposed in the literature. To 

implement such an approach we need to define a scale 

space, find a similarity measure to be adopted at each 

scale, compute the saliency map, and eventually select the 

matching pieces of ink. As with regards to the scale 

space, we adopt the number of strokes in the sequences 

whose similarity is being measured. Such a number will 

be referred in the following as the length of the sequence. 

Accordingly, the number of scales corresponds to the 

length K of the longest common sequence of strokes. To 

compute the value of K, some constraints derived from 

the different nature of the strokes are applied. Basically, 

those constraints are used to exclude from the longest 

common sequence strokes that may have similar shape 

but different semantic values. For instance, the shape of 

both the character “e” and the character “l” can be 

segmented in two strokes whose shapes are very similar, 

except for the size. An algorithm using information from 

the ink layout (zoning), shape and relative position of the 

strokes labels the strokes as ascender, descender, upper 

central, lower central and central. The labels of each pair 

of strokes are compared to check their compatibility, so 

that pairs of incompatible strokes are not included in any 

sequence. Thus, K represents the length of the longest 

common sequence of compatible strokes. Successive 

scales are obtained considering sequences made of K-1, 

K-2,…, 2 strokes. At the end of this stage, thus, we obtain 

K-1 similarity maps, each of which contains as many 

elements as the number of longest common sequences of 

compatible strokes of the given length that can be 

extracted from the original ink. As similarity measure, we 

adopt a new string edit distance called Weighted Edit 

Distance (WED). WED is based on the concept of string 

stretching: it does not introduce or delete any symbol in 

the strings to compare, but simply extends, or stretches, 

the shortest string in such a way that each symbol of this 

string is compared with one or more symbols of the other, 

depending on the ratio R between the lengths of the two 

strings. The edit distance is then computed by summing 

the cost of substitution of each compared pair of symbols, 

weighted by a coefficient whose value depends on both 

the position of the symbols in the two strings, and the 

value of R. After the ink similarity is evaluated at each 

scale by computing the WED on the corresponding 

strings of symbols, we compute the saliency as it follows. 

At each scale K, the best matching pair of sequence, i.e. 

the pair whose WED is the highest, is selected and the 

strokes belonging to the corresponding sequences are 

assigned a saliency value Sk = WEDK /K. The saliency 

value Sij for each pair of strokes is then obtained by 

adding up all the saliency values Sk for that pair of strokes 

for k= 2, 3, ..K. Thus, the saliency map S for a pair of inks 

made of N and M strokes, respectively, assumes the shape 

of an NxM array, whose elements are either 0, in case of 

incompatible strokes, or Sij. The saliency map is then 

thresholded, and the diagonal sequences of values Sij 

greater than the threshold constitute the matching pieces 

of ink [9]. 

In order to associate to each invariants its 

interpretation, we use a set of words from a reference set. 



Each reference word is segmented into strokes as 

described in Section 2, and each stroke is labeled with the 

character it belongs to in that word, so that it is associated 

with a string of as many symbols as the number of strokes 

the word is presumably made of. This is achieved by 

estimating the distribution of the number of strokes for 

each character class from a training set of words for 

whom the labels to be associated to each of its stroke have 

been manually entered. With such a piece of information 

we estimate the actual number of strokes for each 

character of the reference word by solving a MAP 

problem. Fig 1a) shows segmented and labeled samples 

from the reference set. 

During the matching between the unknown word and 

each reference words, every time a match is found the 

labels associated to the matching strokes of the reference 

are assigned to the matching strokes of the unknown, and 

the score S of that sequence is incremented by one. Since 

each unknown is matched with all the references, it may 

happen that the same sequence of strokes of the unknown 

receives different labels, as well as that different 

sequences of strokes receive the same labels. This is not 

unusual, in that, due to shape variability in handwriting, 

pieces of inks similar to the one of the unknown may be 

associated to different labels, but also that different pieces 

of ink in different references are associated to the same 

labels. For instance, an open loop can be part of an a in 

one of the reference, correspond to an o in another one, or 

found in the group ce in a third one. When sets of 

sequences of strokes with the same label which partially 

overlap are found, we merge them and retain only the 

highest scoring one. For each overlapping sequence, we 

add to the score S of the highest ranking one(s) a merging 

factor M given by: 

 

M = S*L/(b1-e2) 

 

where L is the length of the overlapping part, and b1 and 

e2 represent the position of the first and last strokes of the 

overlapping pair, respectively. The rationale behind is that 

less frequent sequences are either associated with less 

frequent shapes or found because of small variations in 

the labeling of the segments endings, due to anticipatory 

effects or the presence of ligatures, which may results in a 

displacement of the string of symbols corresponding to a 

(group of) character. In both cases, overlapping sequences 

have a common part and differ only at the endings, thus 

only contribute to improve the occurrence of the common 

part in the most frequent ones. The set of partially 

overlapping sequences of symbols obtained at the end of 

the merging, shown in fig. 1d) represents the data from 

which the desired interpretation of the word is computed, 

as it is described in the next Section. 

4. FROM INVARIANTS TO WORDS 

Given the set of partially overlapping interpretations 

provided by the previous step, reading the word becomes 

finding the sequence of invariants that goes from 

(possibly) the beginning of the ink to (possibly) the end, 

under the constraint that the positions of the invariants 

along the ink is fixed.  

While ordering the invariants along the ink is trivial in 

case of adjacent invariants, i.e. a pair of successive 

invariants with the ending of the leftmost immediately 

followed by the beginning of the rightmost, this decision 

may be troublesome in presence of overlapping 

invariants, in that this means that we have found different 

invariants associated to the same (group of) characters. In 

such a case, all of them are retained and considered either 

as successive or alternative to each other depending on 

which choice leads to better interpretations, as it will be 

explained soon. In case overlapping invariants are 

associated to different strings of symbols, this means that 

we have found the same invariant associated to different 

characters, as expected because of the variability of 

handwriting shape, as illustrated earlier. Therefore, they 

should not be considered as successive, but rather as 

alternative interpretation for the corresponding ink. It is 

often the case, however, that two invariants overlap at one 

of their extreme for just one symbol. Such a case was also 

expected, in that when two characters are written one after 

the other, the end of the first and/or the beginning of the 

last may be modified or even merged into a single stroke 

because of the anticipatory effect mentioned earlier, or 

because an extra stroke is added to avoid the much more 

expensive (for human movement point of view) sequence 

of perception/action cycles needed to lift the pen from the 

paper, compute the next target and perform a ballistic 

movement towards it. In both cases, the symbols 

corresponding to the first and/or the last stroke of a 

sequence are intrinsically less reliable. So, when these 

cases happen we consider the two overlapping invariants 

as successive. 

Given the above criteria for ordering the invariants 

along the ink, however, there may be many possible 

solutions to the problem, each of which corresponds to an 

interpretation. To order them, we consider that, at least 

intuitively, the best solution is the one that simultaneously 

minimize the gaps and overlaps among invariants and 

maximize the rank of the solution. Under these 

assumptions, building the interpretation can be 

reformulated as an optimization problem. To tackle it, we 

map our sequencing problem to a graph, representing 

each invariant as a node of the graph, and possible 

connections between pair of successive nodes as arcs (fig. 

1e). Adopting such a representation, the optimization 

problem can be reformulated as the well-know shortest 

path problem in graph theory by defining a function that 

maps the arc to a cost function and then searching for the 

path corresponding to the minimum cost by adopting any 

of the algorithm proposed in the literature, such as the 

Dijkstra's algorithm and its variants [11]. Our cost 

function is obtained by assigning to the node i the weight 

Ni = Max – Si, 

where Si is the score assigned to the node i as explained 

before and Max the largest Si, and to the arc going from 

node i to node j the cost  

Aij = 0    for adjacent nodes; 

Aij = L*P                for gap of length L;  

Aij = min(Si,Sj)*L/Lk               for overlap of length L; 

where P is the gap penalty, and Lk denotes the length of  
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a) Samples from the reference 

set 

b) Unknown Ink 

c) Segmentation 

e) Final interpretations 

Figure 1: The method at a glance. 



the lowest ranking sequence of the pair. Thus the cost Cij 

of the path going from node i to node j is: 

Cij=Ni+Aij+Nj  

The desired interpretation for the unknown, thus, 

corresponds to the shortest path of the directed graph 

representing the adjacency between the matching 

sequences. In case there are overlapping sequences at the 

beginning/end of the word, each of them needs to be 

considered as starting/ending node. Fig. 1e shows the top 

3 interpretation for the unknowm word of fig 1b), the 

symbols ? indicate unmatched strokes in the unknown. 

5. EXPERIMENTAL RESULTS 

The performance of the proposed method has been 

evaluated on the Unipen data. In particular, we have used 

the benchmark ICROW_03 that was proposed at ICDAR 

2003 [12]. We have selected a data set of 210 words, of 

which 106 were used as reference set and the remaining 

104 as test set. The words of the reference setwere 

processed as described in Section 3 for associating to each 

of their strokes the character labels.  

During the experiment, each word of the test set was 

matched against the whole reference set to find the 

matches, merge and score them. Then, the sequences 

provided by the ink matching were organized into a graph 

and the shortest path algorithm provided a ranked list of 

interpretations. To provide a quantitative evaluation of 

our method, we have considered that a word has been 

correctly recognized even when some of its strokes do not 

receive any label, but all the characters are correctly 

recognized and located. This assumption was introduced 

to deal with extra strokes associated to ligatures, as 

discussed in Section 3. Under this assumption, we found 

that 12 out of the 104 words of the test set (11,58%) were 

not correctly recognized. For the remaining 92 words, in 8 

cases (7,69%) the best interpretation was the correct one, 

in 13 cases the correct interpretation was either the second 

or the third one, for 23 it was the 4th or the 5th, for 36 

words it ranked between the 6th and the 10th and 

eventually, for 8 words it ranked below the 10th position. 

Table I reports the recognition rates that follows from 

those numbers.  

Table I. Recognition rates 

Top 1 Top 3  Top 5 Top 10 Below Errors 

7,69 20,19 42,31 76,92 92,39 7.69 

 

6. CONCLUSION 

We have surveyed a research project aimed at 

designing a method for cursive handwriting recognition 

which follows from studies on handwriting movement. 

The approach proceeds by extracting from the ink the 

invariants, i.e. those pieces of ink that are usually 

associated when drawing a character or a sequence of 

them, and then concatenating those invariants within the 

handwriting along the writing direction.  

The proposed implementation of the method builds 

upon two pillars: saliency of information and context 

dependent shape analysis. The concept of saliency is 

exploited for finding where the relevant information is 

located within the ink, avoiding any a priori assumption 

on the ink shape. Context dependent shape analysis is 

exploited for finding similar pieces of ink between the 

unknown and the reference set, without resorting to some 

predefined set of features to describe the ink shape, nor to 

classification to associate the ink with its interpretation. 

The experimental results, although obtained on a small 

set of data produced by a single writer, confirm that the 

proposed approach is effective in providing correct 

interpretations even in case the unknown is not included 

in the reference.  

One may argue, however, that the method usually 

provides many interpretations, from which the right one 

needs to be extracted, and that solving this problem 

requires the use of a dictionary. We have not yet 

investigated systematically this aspect, but preliminary 

experiments have shown that the problem is easier than it 

may appear, because most of the interpretations either 

contains orthographical errors or are non sense words. 

Thus, a spell-checking followed by a dictionary search 

should succeed in deleting them from the list of possible 

interpretations.  

The analysis of the errors has also shown that most of 

them were on sample produced by the same writer. 

Looking at them, we realize that the writer was using 

invariants that were not included in the reference set. 

Thus, a larger reference set should be considered, so as to 

include as much handwriting variability as possible. On 

the other hand, as the reference set increases, the number 

of matches with an unknown becomes larger, leading to 

many more interpretations. So, the need to define more 

sophisticated criteria to rank the interpretations in such a 

way that the right one is pushed towards the top becomes 

indisputable.  

Eventually, the analysis of the results in case of words 

whose correct interpretation ranks very low has shown 

that sometime good sequences receives low score because 

of gaps and overlaps that are due to imprecise labeling of 

the reference set. Improving the performance of the 

labeling algorithm for the reference set, will then be 

another goal of our future investigations.  
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