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Abstract: The problem of the error probabilities 

evaluation for the sequential probability ratio test is 

considered. Lower and upper estimates for the error 

probabilities are obtained and the accuracy of the 

approximation is analysed. 
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1. INTRODUCTION  

The sequential method of hypotheses testing is widely 

used for information processing in medicine, statistical 

quality control [3], biology [7] and finance [6]. A profit of 

the sequential procedures is that the average number of 

observations is less than for the equivalent tests 

procedures based on a fixed number of observations [1]. 

The sequential probability ratio test (SPRT) proposed 

by A.Wald [1] is considered in the paper because it is 

used quit often for practical purposes [7]. 

One of the sequential approach disadvantages is that 

the probabilities of types I and II errors could not be 

calculated exactly. In [2] an algorithm for approximate 

calculation of error probabilities is described, but there is 

no accuracy evaluation. In this paper not only the 

algorithm of the lower and upper estimates constructing is 

presented and the convergence of these estimates is 

proved, but the approximation accuracy is obtained as 

well. 

Theoretical results are illustrated by computer 

modelling. 

2. MATHEMATICAL MODEL 

Let random observations R,, 21 xx  be 

independent and identically distributed according to a 

probability density function ),( xf  with a parameter 

},{= 10   . The true value of   is unknown. Let the 

cumulative distribution function ),( xF  corresponds to 

),( xf . 

There are two simple hypotheses on the value of the 

parameter: 

1100 =:,=:  HH . (1) 

Denote the accumulated likelihood ratio statistic: 
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is the likelihood ratio statistics calculated on the 

observation tx . 

To test the hypotheses (1) by 1,2,...=n  observations 

sequentially, the SPRT is used: 

}),(:min{  CCnN nN , 
(4) 

)(1 ),[ NCd  
, (5) 

where N  is the stopping time, at which the decision d  is 

made according to (5). In (4) the thresholds  CC ,  are 

the parameters of the test and defined according to [1]: 
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where 00 ,   are given maximal possible values of 

probabilities of types I and II errors respectively. It is 

known [1] that 00,  are only approximate values of the 

actual error probabilities of types I and II. 

Let us make the following assumptions: 

A1) the function ),( xf  has the finite derivatives of 

the order 1 and 2 on x , and 0,)(0, f   ; 

A2) the function )(x , defined by (3), is strictly 

monotone w.r.t. x  and has the non-zero 1
st
 derivative. 

These assumptions are satisfied, for example, by 

members of the exponential family of probability 

distributions that have the following kind of probability 

density function: 

)}()({)()(=),(  dxcexpbxaxf , 

where 

1) the functions )(xa , )(xc  have finite derivatives of 

the order 1 and 2, also 0)( xa  and 0)( b ; 

2) the function )(xc  has the derivative of the constant 

sign, i.e. 0>)(xc  or 0<)(xc , and )()( 10  dd  . 

Without loss of generality, we suppose that the 

hypothesis 0H  is true, so the value of the probability of 

type I error is considered. 
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3. CONSTRUCTION OF BOUNDARY CHAINS 

Denote: 

m
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where Nm  is the parameter of a fragmentation 

(approximation);   t
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here ][  means the integer part of an argument. 

As the random variables 

t  are independent (because 

of t  independence), the random sequence n  is a 

Markov chain. 

Introduce the Markov chain 

nL  with the states 

}1,...,1,0{ m : 
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and let 0  and 1m  be the absorbing states. 

Theorem 1. If assumptions A1 and A2 are fulfilled for 

the considered model, then the initial probabilities and 

the one-step transition probabilities of the Markov chain 


nL  are: 
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Proof is based on the equivalent transformations of 

the correspondent random events.   

The Markov chain n  is constructed similarly to n : 
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Denote the Markov chain 

nL  as follows: 
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and let 0  and 1m  be the absorbing states. 

Theorem 2. If assumptions A1 and A2 are fulfilled for 

the considered model, then the initial probabilities and 

the one-step transition probabilities of the Markov chain 


nL  are: 
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Proof is similar to the proof of Theorem 1  . 

Let us notice that 

ii  = , 10,= mi . So denote 



iii  == . Probabilities 

jip ,  are the elements of the 

matrices mmRP    and 2  mRR : 
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Let us notice that the transition probabilities matrices 
P  are Toeplitz [8], therefore effective algorithms can be 

applied to perform calculations with them. 

Theorem 3. The Markov chain n  is bounded by n  

and n : 

  nnnNn : . 

Proof is based on the properties of the integer part of 

the real number and on the definitions of Markov chains 
n , n  (7), (8).   

The constructed Markov chains n  и n  are called 

here by boundary chains. 

4. ASYMPTOTIC PROPERTIES 

Let )( k

qp hO  , Nk , be the matrix of the size qp , 

with each element being )( khO , 0h . 

Lemma 1. If assumptions A1 and A2 are fulfilled for 

the considered model, then the matrices P  and R  

satisfy the following equalities at 0h : 

)(=),(= 2
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Proof. Denote )|(=)( 0yfyf  and consider the 
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get: 
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The function )(yf  has finite derivatives of the 

order 1 and 2 because assumption A1 is fulfilled. Using 

the middle rectangle formula [9] and then expanding 

)(1   and )(f  in the Taylor series, we get: 
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Considering the )(ij -th element of the matrix P  is 

made similarly: 
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(11) 

Subtracting 

ijp  from 

ijp  yields ).(= 2hOpp ijij

   So 

)(= 2hOPP mm

  . The equality )(= 2 hORR m

   is 

obtained similarly.   

Lemma 2. Under the conditions of Lemma 1, the 

matrices P , R and   satisfy the following asymptotics 

at 0h : 

)(=,(1)=),(= 12 hOORhOP mmmm 
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Proof follows from (10), (11) and similar results for 

the elements of R  and  .   

Lemma 3. Under the conditions of Lemma 1, the 

following asymptotic results hold at 0h : 
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Proof follows from the expansion of the function 




1

1
=)(g , 1|<|  , in the Taylor series and the result 

of Lemma 1.   

Let   be the probability of type I error for the SPRT 

(4), (5). Let 

m  and 

m  be the probabilities of absorption 

in the state 1m  for the Markov chains 

nL  and 

nL  

respectively. From the construction of Markov chains 

nL  

and 

nL , it follows that 

  mm  . (12) 

Theorem 4. For the considered model the following 

asymptotic result holds: 
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For 

m  we obtain in the same way 
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Using the results of Lemmas 1-3 and taking in mind 

(6), we have: 
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So )(= hOmm

  .   

From Theorem 4 and (12) it follows that 


m  tends to 



the value 0 , and 

m  tends to 0  at 0h  

( m ). 

Denote by 
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Corollary 1. The approximation Ошибка! 

Источник ссылки не найден. converges to the value of 

probability of type I error with the rate )(hO , and the 

absolute deviation from this value is not more then a half 

of the segment ],[ 

mm  : 

   mmm 
2

1
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5. NUMERICAL EXPERIMENTS 

To illustrate the theoretical results, we performed  

computer modelling. The case 0.1== 00   was 

considered. 

Let MC€  be the Monte-Carlo estimate for the 

probability of type I error for the SPRT (4), (5). For each 

set of parameters 5 000 000 replications were performed. 

The observations ,..., 21 xx  were normally distributed 

with the probability density function 
2)(

2

1

2

1
=),(






 x

exf . The analysed hypotheses were 

110 :,0:   HH . 

The results of computer modelling are presented in 

Table 1. 

Table 1. Results of numerical experiments 

1  m  

m  m€  MC€  

m  

1.0 

50 0.04906 0.05981 

0.05843 

0.07055 

100 0.05362 0.05896 0.06431 

500 0.05762 0.05869 0.05976 

1000 0.05814 0.05868 0.05922 

2000 0.05841 0.05868 0.05895 

0.5 

100 0.05239 0.08206 

0.07667 

0.11172 

500 0.07108 0.07691 0.08274 

1000 0.07384 0.07675 0.07966 

2000 0.07525 0.07671 0.07817 

3000 0.07573 0.07670 0.07767 

0.3 100 0.02960 0.12765 0.08535 0.22570 

500 0.06928 0.08703 0.10478 

1000 0.07692 0.08576 0.09460 

2000 0.08104 0.08545 0.08986 

3000 0.08245 0.08539 0.08833 

0.2 

500 0.05649 0.09857 

0.08993  

0.14065 

1000 0.07143 0.09214 0.11285 

2000 0.08022 0.09053 0.10084 

3000 0.08336 0.09023 0.09710 

4000 0.08498 0.09013 0.09527 

 

These results show that the lower and upper bounds of 

the probability of type I error are precise enough for 

reasonable values of m . So the proposed methodology 

can be used in practise to approximate the type I and II 

error probabilities for sequential testing of data from a 

continuous distribution. 
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