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Abstract: This paper presents an efficient approach for 

multiplierless implementation for eight-point DCT 

approximation, which based on coordinate rotation 

digital computer (CORDIC) algorithm. The main design 

objective is to make critical path of corresponding 

circuits shorter and reduce the combinational delay of 

proposed scheme. 
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1. INTRODUCTION  

It is well know that the discrete cosine transform 

(DCT) has been widely used in many areas such as speech 

and image coding. In particular, the two-dimensional     

(2-D) DCT has been adopted in some international 

standards such as MPEG, JPEG and CCITT [1]. A 2-D 

DCT can be obtained by applying 1-D DCT over the rows 

followed by a 1-D DCT over the columns of the 8x8 data 

block [2]. Therefore the efficient implementation of DCT 

has become the most important issue in developing real-

time embedded system. In mobile multimedia devices 

such as digital cameras, cell phone or pocket PCs 

hardware complexity as well as power consumption has to 

be minimized. To do this the great number of fast DCT 

algorithm were proposed [3], among which Loeffler 

algorithm [4] gained the lower bound of multiplicative 

complexity for 8-point DCT. It’s required only 11 

multiplication and 29 addition. But the common 

disadvantage of all fast DCT algorithm is that they still 

need floating point multiplication. These operations are 

very slow in software implementation and require large 

area and power in hardware. And therefore can not be 

used in mobile multimedia devises. So there is still the 

need to look for new design of DCT algorithm 

compromises better suited to particular application. 

Mathematically, fast DCT is composed of additions 

and multiplications by constants. When implemented in 

hardware, the multiplication by constants are often 

implemented by a sequence of additions and shifts which 

is less expensive in terms of chip area and power 

consumption [5]. These implementations of transforms 

are referred to as multiplierless. The binDCT seems to be 

the most notable result in this field [6]. This transform is 

based on VLSI-friendly lattice structure and derived from 

DCT matrix factorization by replacing plane rotations 

with lifting schemes. Another popular way of 

multiplierless implementation of DCT is to use the 

coordinate rotation digital computer (CORDIC) algorithm 

[7]-[9]. Since the CORDIC algorithm leads to a very 

regular structure suitable for VLSI implementation.  

In [10], it has been concluded that the length of the 

critical path, i.e. the maximum number of adders 

operating in cascade, strongly affects the performance of 

a hardware implementation of DCT. It has been shown 

that 30-40% decreases in delay and power consumption 

were obtained after shortening the critical path from 10 to 

7, even through at the cost of increasing the total number 

of adders. In [7] were found that it is possible to optimize 

CORDIC-based structures to shorten the critical path to 5-

6 additions still having good coding performance.  

In this paper we discus the FPGA implementation of 

CORDIC-based approximation of the eight-point DCT 

proposed in [7]. The paper begins with a review of fast 

Loeffler’s algorithms and their multiplierless variant. 

Then the details of the proposed FPGA implementation 

scheme are given. 

2. BASE STRUCTURE  

In [7] starting point for derivation of short critical path 

approximation of 8-point DCT is signal flow graph of one 

of several possible Loeffler’s algorithm (Fig. 1). 

x0

x1

x2

x3

x4

x5

x6

x7

X0

X4

X2

X6

X1

X5

X3

X7

Rotation stage

-p ⁄ 8 2

-p ⁄ 16

-3p ⁄ 16

2

2

2

φ

cos φ

sin φ
sin φ

cos φ

Fig 1 – Signal flow graph of a Loeffler’s algorithm. 

 

The only nontrivial operations are the three plane 

rotation by the angel: 8 p - , 16 p - , 3 16 p -  

of the general form 
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In [6] using the lifting-based approach were showed 

that fast and accurate approximations of DCT can be 

obtained without using any multiplication. The obtained 

family of such transforms differing in accuracy and 

efficiency has been called the binDCT. 

Another way of multiplierless implementation of 

plane rotation is CORDIC algorithm were also 

considered. In [11] special attention is given to 

constructing transform approximation maintaining 

orthogonality regardless of their coefficient quantization. 

On, contrary, in [10], performance maximization was of 

interest, especially from the hardware implementation 

point of view. In [7] were presented a novel family of 

CORDIC-based algorithms with short critical paths. Here 

we give the detail of FPGA implementation of DCT 

approximation algorithm proposed in [7]. 

3. CORDIC ALGORITHM  

The CORDIC algorithms are an efficient method of 

producing a variety of trigonometric, hyperbolic and 

linear function [12]. 

In order to realized a plane rotation in CORDIC 

algorithm the rotation angle φ. is decomposed by the 

angle set called the CORDIC arc tangent radix (ATR) as 

follows [9]  
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where {1,0, 1}i  - . Then, the plane rotation is 

performed by the iterative equations given by 
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Note that each iteration assume the scaling of the 

vector, where the scale factor for the ith iteration is given 

by 
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and the total scale factor K is given by 
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Using (2)-(5) we can rewrite (1) in the following form 
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Originally CORDIC algorithm allows σi possessing 

the value ±1. However, recent papers show that 

computational savings can be achieved by allowing 

omitting and repeating some iteration. The elementary 

rotations also called microrotations. 

The common approach of utilization CORDIC 

algorithm adjusted to DCT is to choose set of 

microrotations as close to required rotation angle as it 

possible. In contrast to this approach in [7] were proposed 

another method. The main difficulty that arises when we 

use CORDIC algorithm is necessity of implementation 

scaling. In order to extract scaling factors (for rotation by 

β and γ) outside the transform core in [7] were decided to 

approximate angles β and γ with the same set of the 

absolute values of microrotation, thus scale factor for 

rotation by β and γ became equal and could be extracted 

outside the transform. There is no problem with scaling 

extraction for the rotation by α .  

It could also be noted that the scaling that require 

division by irrational numbers cannot be performed 

exactly using fixed-point arithmetic. However, in the 

most popular international standard such as MPEG and 

JPEG the DCT unit is followed by a quantizer, where 

DCT outputs are scaled by the pointwise division by the 

corresponding scaling constants that are stored in the 

quantization table [1]. Thus, each scaling factor of the 

DCT outputs can be incorporated into the corresponding 

scaling constant without requiring any additional 

hardware.  

4. FPGA IMPLEMENTATION OF CORDIC-BASED 

DCT  

Consider a variant C of approximation DCT given in 

[7]. In this case angles β and γ approximated with 

microrotation i={1,2,4}, { 1,1,1}i

  - , { 1, 1,1}i

  - -  

and for angle α  i={1,4} and { 1,1}i

  - . The scheme 

obtained this way shown in Fig. 2. 
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 Fig 2 – Signal flow graph of variant C of 8-point CORDIC-

based DCT approximation (scaling factor omitted). 
 

It should be noted that practically critical path of the 

suggested scheme contain 7 adders. It is different from 

the result mentioned in [7], where critical path seems 

consist of 6 additions. Optional two adders appears in 

stage 5, where negation of two intermediate data sample 

presented in 2’s complement code need to be 

implemented. 

Examine stage 5 and stage 6 more detail. The first 

simplification that can be made is merging lower adder in 

stage 5 with adders in stage 6 (Fig.3)  

It is known that inversion in 2’s complement code 

performs as  

 

1A A-    
(7) 

 



where A  it is simple bitwise inversion. Using (7) the 

second simplification we made by replacement of upper  
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Fig.3 – Merging of the adder from stage 5 to stage 6 

 

adder that perform negation (stage 5) with simple NOT 

gates (Fig. 4).  
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Fig. 4 – Merging of stage 5 and 6. 

 

Addition of least significant bit (LSB) according to (7) 

can be made in the next stage (addition of LSB 

implements without extra hardware resources because 

conventional adder always have carry input port). 

However, for output X5 LSB bit remain uncompensated. 

Thus we lost one LSB of accuracy for one DCT 

output, but improving scheme performance. Flow graph 

obtained after proposed simplification depicted in Fig 5. 

This scheme can be regarded as combinational circuit 

with total delay  

 

6DCT ADD NOTT T T   
(8) 

 

where ADDT  - adder delay, and NOTT  - delay of gate NOT. 

5. EXPERIMENTAL RESULT  

The proposed method of approximation DCT realized 

with the FPGA place and route (PAR) process to 

determine the exact hardware cost. We use Xilinx Virtex 

series of FPGA for our experimentation. The hardware 

cost is measured as the total number of slices required to 

implement the design. A Xilinx Virtex slice contains two  

D-type flip-flops and two four-input lookup tables (LUT). 

As far as we implement a combinational circuit there is 

no flip-flops is needed. For more accurate measure we 

provide information about occupied slices and LUTs. 

Proposed solution implemented on FPGA XC4VLX25. 

Input data is 8-bit width, output data – 12 bit. Variant I of 

tested solution used only simplification pictured in Fig.3 , 

variant II is the scheme in Fig.5. In out experiments we 

have compared our solution with another low complexity 

DCT approximation algorithm binDCT of type C [6]. 

Table 1 shows hardware cost for DCT 

approximations. Table II compares the complexity and 

critical path of CORDIC-based approximation of DCT 

and binDCT. 
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Fig. 5 – Proposed signal flow graph for FPGA implementation. 

 

 



Table 1. Hardware cost for DCT approximation 

Parameters Variant I Variant II binDCT-C 

LUTs 396 395 317 

SLICEs 206 211 165 

Table 2. Arithmetical complexity and critical path of DCT 

approximation 

Parameters Variant I Variant II binDCT-

C 

No. of 

additions 

37 36 30 

No. of shifts 16 16 12 

No. bit 

inversion 

0 1 0 

Critical path 7 ADDT  6 ADD NOTT T  9 ADDT  

It can be noted that at expense of nearly 20 % in 

number of addition we can make critical path shorter in 

about 35%. 

6. CONCLUSION 

This paper has presented an efficient approach for 8-

point CORDIC-based DCT approximation suitable for 

FPGA implementation. The proposed architecture 

requires 36 add, 16 shift and 1 bit inverse operations to 

carry out the DCT. Also critical path of given solution 

contain only 6 adder. 
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