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Abstract: The paper presents an approach to 

interpolation of rectangular grids which is based on 

deformation of curves which form borders of the patch. 

The deformation is fulfilled by means of polynomials 

which satisfy special boundary conditions. Using this 

approach the problem of determining conditions which 

ensure continuity of an interpolating surface at knot 

points is avoided. Instead curves for deformation have to 

be chosen. 

Keywords: Bernstein polynomials, curve deformation, 

Bézier patches, surface interpolation. 

1. MOTIVATION  

In image processing and geometric modeling it is 

often necessary to reconstruct curves or surfaces using 

grids of knot points. These problems are usually solved by 

construction of spline curves or surfaces interpolating or 

approximating these grids [1]. Classical approaches to 

construct spline curves or surfaces on grids needs 

determination of conditions at knot points which ensure 

necessary continuity of spline curves and surfaces. These 

conditions usually describe values of partial derivatives 

which segments of spline curves or surfaces must have at 

knot points. But it is not easy to determine values of the 

partial derivatives which ensure proper shape and other 

geometric characteristics of spline curves or surfaces. 

Usually to solve this problem some empirical assumptions 

or optimization criteria are used. To avoid the difficulties 

Bézier curves and surfaces are still widely used to solve 

the problem because in this case continuity of spline 

curves and surfaces is controlled by frame points. That is 

why the points are also called control points. 

The paper presents a different approach to 

interpolation of rectangular grids by spline curves and 

surfaces. The approach is based on smooth deformation of 

curves which form border of the patch. The deformation 

is fulfilled by means of polynomials which satisfy special 

boundary conditions. Using this approach the problem of 

determining conditions which ensure continuity of an 

interpolating surface at knot points is avoided. Instead 

curves for deformation have to be chosen. 

The proposed technique was developed by the author 

and inspired by early works on interpolation by means of 

deformation of circular arcs [2]. The proposed 

polynomials were firstly defined by the author at the 

paper [3]. But there they were defined by boundary 

conditions. In this paper the analytical expressions for 

these polynomials are introduced by means of Bernstein 

polynomials. Other applications of these polynomials are 

presented in the paper [4]. 

The paper is structured as follows. Firstly polynomials 

for deformation of curves are introduced. Then it is shown 

how these polynomials can be used for construction of 

spline curves. Next an approach to construction spline 

surfaces interpolating rectangular grids is presented. 

2. APPROXIMATION OF A JUMP FUNCTION  

In order to define approximating polynomials consider 

a jump function 
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It can be seen that the jump function )(u  is infinitely 

smooth at the boundaries but has a discontinuity at the 

middle of the interval [0, 1]. In order to avoid the 

discontinuity the jump function )(u  can be 

approximated by means of Bernstein polynomials. To 

explain construction of these polynomials introduce the 

following sequences of knots: 
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for any Nk . Then using Bernstein polynomials 
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where 10  u , define the following polynomials: 
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Deleting all zero terms yields the following definition of 

the polynomials: 
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where 10  u . 

It follows from this definition that the introduced 

polynomials )(uwk  satisfy the following conditions: 
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for any },,1{ kl  .  

Note some other properties of the polynomials )(uwk  

which will be used further. The polynomials )(uwk  

satisfy the condition 
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for any ]1,0[u . This condition follows from the 

following property of Bernstein polynomials: 

1)(
0

, 


n

m

mn ub  
 

for any ]1,0[u . It follows from Equation (3) that the 

)(uwk  polynomials are symmetric relative to the point 

2/1  that is 

1)2/1()2/1(  vwvw kk .  

Now show that a shape the polynomials )(uwk  while 

k  infinitely close approaches to the shape of the 

jump function )(u . Analytically this means that the 

following equation: 
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is fulfilled. This is true because the polynomials )(uwk  

can be represented using the power basis polynomials 
1ku , 2ku , …, 12 ku . Therefore integration of these 

basis polynomials results the polynomials 2ku , 3ku , 

…, 22 ku . To prove Equation (4) it is sufficient to 

substitute these polynomials into the limit instead of 

the integral.  

It follows from these properties that the introduced 

polynomials )(uwk  approximate the jump function )(u . 

Figure 1 illustrates profiles of the introduced 

polynomials. 

 

Fig. 1 – Profiles of the approximating polynomials 

3. POLYNOMIAL DEFORMATION OF CURVES  

Show how the introduced polynomials )(uwk  can be 

used for deformation of parametric curves in a linear 

space. For this purpose consider two parametric curves 

)(1 up  and )(2 up , ]1,0[u , which satisfy the 

following conditions: 

)0()0( 21 pp  , )1()1( 21 pp  .  

That is the parametric curves have the same boundary 

points. The purpose is to construct a parametric curve 

)(up , ]1,0[u , which satisfies the following boundary 

conditions: 
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for all },,2,1{ kl   where Nk . The parametric 

curve )(up  is called a deformation of the parametric 

curve )(1 up  into the parametric curve )(2 up  with the k 

degree of continuity. 

Define the parametric curve )(up  as follows: 

)()()())(1()( 2111 uuwuuwu kk ppp   , (7) 

]1,0[u , where )(uwk  are introduced polynomials 

which approximate a jump function. Show that the 

defined parametric curve satisfies the boundary 

Conditions (5) and (6). 

It follows Equations (1) that 
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)1()1()1()1())1(1()1( 22111 pppp   kk ww . (9) 

Therefore boundary Conditions (4) are fulfilled. 

Now determine parametric derivatives of the 

parametric curve )(up . It is obtained that 
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Using Equation (3) the last equation can be 

transformed as follows: 
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It follows from this equation that boundary Conditions 

(6) are also fulfilled taking into account Equations (2). 

Thus the parametric curve )(up  defined Equation 

(7) is a deformation of the parametric curve )(1 up  into 

the parametric curve )(2 up  with the k degree of 

continuity. 

Show how deformation of parametric curves can be 

applied to construction of spline curves. For this purpose 

consider four knot points 1ip , ip , 1ip , 2ip  which 

have to be interpolated. Chose two parametric curves 

)(1 up  and )(2 up  which interpolates points 1ip , ip , 

1ip  and ip , 1ip , 2ip  respectively. In general a 

choice of the parametric curves )(1 up  and )(2 up  

depends on the problem to be solved or can be 

conditioned by some optimization criteria. Take only 



those segments of these curves which connect the knot 

points ip  and 1ip . Then a segment of interpolating 

curve )(up  which connects the same knot points can 

de determined using Equation (6).  

Figure 2 illustrates the proposed approach to 

construction of spline curve segments interpolating the 

knot points. 

 

Fig. 2 – Construction of interpolating curve segments 

It is obvious that to ensure kC  continuity of a 

parametric spline curve )(up  passing through the knot 

points ip  where },,1,0{ mi   it is sufficient to 

deform consecutive parametric curves which smoothly 

or at least kC  continuously joined at the knot points. 

It should be noted that the constructed spline curve 

)(up  has local control. That is changing a knot point of 

the spline curve forces changing shapes of only two 

segments which are incident to the knot point. 

4. INTERPOLATION OF RECTANGULAR GRIDS  

Consider a rectangular grid of points ijp  in a linear 

space where },,1,0{ mi  , },,1,0{ nj  . The 

problem is to construct a kC  continuous surface which 

interpolates points of this grid. Using approximating 

polynomials )(uwk  Solution of this problem can be 

performed as follows. 

Firstly mesh of parametric curves which will be used 

to determine borders of patches must be constructed. 

Figure 3 illustrates construction of this mesh. The 

simplest way to construct this mesh is to use parabolas in 

Bézier form for deformation curves. 

 

Fig. 3 – Mesh of parametric curves for deformation 

Then it is necessary to determine borders of patches. 

The borders can be constructed using Equation (7). Thus a 

rectangular mesh of spline curves is constructed and 

segments of these spline curves are borders of patches. 

Figure 4 illustrates construction of the mesh. 

 

Fig. 4 – Rectangular mesh of spline curves 

Now patches of surface which interpolates the 

rectangular grid can be constructed. A patch of the surface 

will be determined by means of deformation of its 

borders. In order to obtain an analytical expression of a 

patch consider for corner points ijp , ji ,1p , 1, jip  and 

1,1  jip  of the patch. Let )(1, uji p , )(1,1 uji p , 

)(,1 vjiq , and )(1,1 vji q  are parametric curves which 

satisfy the following boundary conditions: 

ijjiji pqp   )0()0( ,11, , (10) 

jijiji ,11,11, )0()1(   pqp , (11) 

1,,11,1 )1()0(   jijiji pqp , (12) 

1,11,11,1 )1()1(   jijiji pqp . (13) 

Then determine a patch by means of the following 

expression: 
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Show that the parametric curves )(1, uji p , 

)(1,1 uji p , )(,1 vjiq , and )(1,1 vji q  are borders of the 

parametric surface ),( vup . Taking into account 

Equations (8), (9) and (10) – (13) it is obtained that 

  )()0,( 1, uu jipp   



  )0())(1( ,11 jik uw q  

  )0,()0()( 1,11 uuw jik rq  

  ijkji uwu pp ))(1()( 11,  

  jik uw ,11 ))( p  

  jikijk uwuw ,111 )())(1( pp  

)(1, uji  p  

Analogously it can be shown that 

)()1,( 1,1 uu ji  pp ,  

)(),0( ,1 vv ji qp ,  

)(),1( 1,1 vv ji  qp .  

Now prove that the interpolating surface composed 

of patches defined by Equation (14) is kC  continuous. 

Since the patches have common borders it is sufficient 

to prove that the surface is kC  continuous along these 

borders. For this purpose consider three arbitrary 

adjacent patches ),( vuijp , ),(,1 vujip  and ),(1, vuji p  

for ]1,0[, vu . Determine partial derivatives along the 

parametric curves which are borders of these patches. 

It is obtained using Equations (2) and (6) that  
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for all },,2,1{ kl  . Analogously can be proven that 
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for all },,2,1{ kl  . 

It should be noted that the constructed spline surface 

),( vup  has local control. That is changing a knot point of 

the spline surface forces changing shapes of only four 

patches which are incident to the knot point. 

Figure 5 shows interpolation surface which is 

constructed by the proposed approach. 

 

Fig. 5 – Interpolating spline surface 

5. CONCLUSION  

The paper presents a method to construct surfaces 

interpolating rectangular grids. The method is based on 

deformation of border curves using polynomials 

satisfying special boundary conditions. Analytical 

expressions for these polynomials by means of Bernstein 

polynomials are presented. 

The distinguished feature of the presented approach to 

curve and surface interpolation is that the problem of 

determining boundary conditions at knot points is 

substituted by the problem of determining curves for 

deformation. The new problem can be simpler in some 

cases and have more visual representation. 

Interpolating spline curves and surfaces constructed 

with the presented approach have local control. That is 

changing a knot point of a spline curve or surface forces 

changing only those shapes of segments or patches which 

are incident to the knot point. 
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