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Abstract: We consider pattern recognition problem under 

the condition that active design of experiments is 

available. The algorithm of adaptive construction of 

classification tree is suggested. In the consequent design 

of experiment, the algorithm takes into account logical 

regularities with correspondent estimates of risk obtained 

on previous stages of the analysis. For risk evaluation, we 

use the Bayes model of recognition on a finite set of 

events. The results of statistical modeling with small 

number of observations and heterogeneous features 

demonstrate the effectiveness of the proposed 

methodology. 
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1. INTRODUCTION 

The possibility of active design of experiment exists in 

a variety of data mining applications, particularly, in 

pattern recognition. The need of adaptive methods arises 

from the following basic demands. Firstly, decision 

function should be adjusted when learning sample 

expands its volume. We shall call this variant “passive 

experiment”. This kind of experiment is rather important 

for large datasets that do not fit in memory. Secondly, 

collecting and analysis of data can be labor-consuming, so 

it is reasonable to organize this processes in such a way to 

reach the best performance (i.e., probability of right 

recognition) under the given constraint on maximum 

sample size. This process can be viewed as “active 

experiment”. 

These two paradigms are used in pattern recognition, 

regression analysis, optimization (it should be noted that 

the problem of global extremum finding can be 

considered also as a problem of data analysis). According 

to the above-mentioned paradigms, it is possible to 

classify known methods of pattern recognition. The 

classic case of passive experiment is the most studied one. 

The idea of changing the recognition decision function as 

new objects come (i.e., the adaptation to sample growing) 

is also fairly known. It is used in sequential recognition 

and in neural networks; consequent adaptive analysis of 

learning sample is implemented in bagging/boosting 

algorithms [1]. The paradigm of active experiment is used 

in reinforcement learning methods, when it is expected 

that certain active agent influencing upon the environment 

exists [2]. 

There is a wide range of information 

retrieval/processing problems (e.g., in health care, for 

clinical trials planning; in geology, for mine planning 

etc.) with the following particularities: a) presence of 

heterogeneous variables describing object properties; b) 

additional expert knowledge that should be taking into 

consideration; c) possibility of active influence on 

sample. However the available adaptive methods are not 

orientated towards the decision of such sort of problems. 

In the given paper, we suggest a method for adaptive 

planning of experiments based on logical decision 

functions. The consequent design of experiments is 

carried out with taking into account logical regularities in 

data structure and risk estimations obtained on previous 

steps of the analysis. Logical decision function class [3] is 

a convenient tool in data mining, especially in hard-to-

formalize areas of investigations. It allows to work with 

heterogeneous features and present the results in a 

comprehensible form. The Bayes model of recognition on 

a finite set of events [4,5] allows to evaluate the right 

complexity of decision function class and the probability 

of error, taking into account available expert knowledge. 

The rest of the paper is organized as follows. In 

section 2 we describe the algorithm of adaptive 

construction of classification tree with use of adaptive 

methodology. In section 3 we consider the Bayes model 

of recognition on a finite set of events and its application 

for decision tree construction. In section 4 we present 

experimental results. The last section contains concluding 

remarks. 

 

2. ADAPTIVE CONSTRUCTION OF 

CLASSIFICATION TREE  

The main task of adaptive planning in pattern 

recognition consists in drawing the decision function, to 

the best degree close to optimal Bayes decision function 

fB, subject to constraints on maximum number N of 

experiments (''close'' means that the difference in error 

probability for these functions is small). Let us suppose 

that there is an expert information on that the error 

probability for fB does not exceed certain small value. 

This means that the patterns are well “separated” in 

variable space by some unknown discriminate function. 

Let each of objects from the general collection be 

described by some variables X1,…,XJ (amongst them can 

be variables of quantitative or of qualitative nature). For 

quantitative variable Xj, define the domain Dj as the 

interval [xj,min,xj,max] of its variation. For qualitative 

variable Xj, Dj is the set of correspondent values. Under 

power of Dj (denoted as |Dj|) we shall understand the 

mailto:berikov@math.nsc.ru
mailto:lbov@math.nsc.ru


length of correspondent interval, or the cardinality of the 

set of values (for qualitative variable). 

The values of the qualitative forecasted variable Y 

should be called “patterns” or “classes”. Consider pattern 

recognition problem with K=2 classes. Let the loss 

function Lr,l be given. The losses appear when the 

predicted class is r, but the true class is l, where r,l=1,2. 

For the solution of pattern recognition problem, one 

should use certain class of decision functions and some 

quality criterion depending on learning sample. The 

function, optimal by the criterion should be found. The 

class of logical decision functions [3] is defined on the set 

of partitions of feature space on a finite number of sub-

regions described by conjunction of predicates of simple 

form. The number of sub-regions defines the complexity 

of logical function (under the fixed type of predicate). 

Decision (classification) tree is a convenient hierarchic 

form of a logical decision function. 

In active planning, the process of sample designing 

can be divided on Q stages. When the q-th stage is carried 

out (q=2,3,…,Q), the empirical information revealed at 

previous q–1 stages of the analysis should be taken into 

account. Consider the following basic steps of the 

algorithm. 

1. On the first stage, the planning of points in variable 

space is performed by use of the uniform distribution 

(since there is no information on the behavior of 

forecasted variable). 

2. Let q be current stage number, where q=2,3,…,Q. 

Build a decision tree Tq using the sample formed at 

previous stage, with some algorithm of tree construction. 

In our work, we use the recursive method for decision tree 

construction [6] that demonstrates good generalization 

performance in case of complex dependencies between 

variables.  

3. Consider a partitioning of feature space into Mq 

subregions E1,q,…,EM
q
,q corresponding to the leaves of 

decision tree Tq. Subregion Em,q is a Cartesian product 

Em,q= Em,q,1×…×Em,q,J of correspondent projections on 

axes (either intervals or subsets of values, depending on 

the type of variable).  The planning of q-th groups of 

experiments should be organized, in principle, to reduce 

the misclassification risk as much as possible. For the 

evaluation of the risk, we use the Bayesian estimates of 

error (see next section), obtained by the Bayes model of 

recognition on a finite set of events (the subregions are 

considered as “events”). Let us fix a way of allocation of 

planned Nq points (



Q

q

q NN
1

) in each of the subregions, 

for example, by use of the uniform distribution. 

4. For new experiment planning, the adaptation 

consists in changing the probabilities P1,q,…,PM
q

,q of 

falling into the subregions. This changing should reflect 

the information on the behavior of Y, accumulated up to 

the current stage. For example, if it was revealed that the 

predicted variable possesses comparatively small degree 

of variation in a certain subregion (i.e., one of the classes 

significantly prevails others) then the probability of 

falling into this subregion should be decreased. Let us 

denote the relative power (”volume”) of subregion Em,q as 

|Em,q|, where |Em,q| 


J

j j

jqm

D

E

1

,,

||

||
, |Em,q,j| is 

correspondent subinterval length (cardinality).  Let us 

consider a class of planning strategies for which the 

following property is valid:  

Pm,q=gq( qmR ,
ˆ ,Um,q),                              (1) 

where gq is certain positive function monotonically 

increasing with each of the arguments, qmR ,
ˆ  is an 

estimate of risk for subregion Em,q, Um,q=|Em,q|/nm,q is the 

“lack of study” index (LSI) for Em,q, nm,q is the number of 

objects in Em,q, m=1,2,…,Mq; 



M

m

qmP
1

, 1 . Thus, the 

probability of belonging to the subregion increases with 

increasing risk and LSI. The concrete type of function gq 

can be chosen in different ways. In our work, we use the 

simplest linear presentation: gq(r,u)= ))((
1

urq
Zq

 , 

where Zq is normalizing factor, )(q ≥ 0 is adaptation 

coefficient monotonically growing with stage number q 

(“adaptation” means here that the degree of confidence to 

the estimate rises with increasing sample size). The linear 

form of the dependence was used:   qq)( , where 

 ,   are some parameters. 

5. Design new Nq points in accordance with 

probabilities Pm,q, m=1,…,Mq. After planning of new 

objects, the next variant of decision tree is built (go to 

step 2) etc. until all Q stages will be performed. 

3. BAYES ESTIMATES OF RISK 

In [4,5], the Bayes model of recognition on a finite set 

of events was introduced. The model allows to evaluate 

the optimal complexity of logical decision functions class 

taking into account both empirical data and expert 

knowledge. The model is not oriented on the most 

“unfavorable” distribution and on the asymptotic case, 

takes into account expert estimate of the degree of 

“intersection” between classes. Instead of points in feature 

space, we consider the “events”, where under the “event” 

we understand taking by features the values from a 

subregion of feature space. The available expert 

knowledge about forecasting problem is taken in account 

by using appropriate a priori distribution in the context of 

the Bayesian approach.  

Consider decision tree Tq formed at q-th stage of 

planning. Each m-th leaf of the tree corresponds to a 

subregion Em of feature space, where m=1,…,M=Mq. 

Denote )(i

mp  the probability of the event: “ x Em, Y=i”, 

and denote ),...,( )2()1(

1 Mpp , Θ={θ}. The risk for the 

given decision function  f: YX   will be:  


mi

mfm

i

mf LpR
,

)(,

)()( . 

Let us assume (from the Bayesian point of view) that 

the probability space is defined on Θ, and consider 

random vector Θ with a priori density function p(θ). 

Assume that Θ follows the Dirichlet distribution 

(Θ~Dir( )2()1(

1 ,.., Mdd )): 
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where 0)( i

md  are some parameters, i=1,..,2, m=1,…,M, 

and Z is normalizing constant. In case of a priori 

uncertainty (on the first stage of planning), we may set 

1)( i

md . The questions concerning the choice of the 

Dirichlet parameters were discussed in [5]. 

Consider a mathematical expectation of risk 

Rµ=E|S,ΘRµ(S)(Θ), where the averaging is done over the set 

S of all possible learning samples ),...,( )2()1(

1 Mnns  of size 

N=Nq, ( )(i

mn is the number of objects of i-th pattern that 

belong to m-th leaf of the tree) and all possible vectors Θ; 

µ is a learning method (“algorithm”) viewed as a mapping 

S 


Φ, where Φ is a class of all possible decision 

functions (decision trees). In this work we consider 

empirical risk minimization method: 

}{maxarg)( )(
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i

m
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In [4], the theorem was proved, that can be written in 

our notations as follows:  

Rµ=
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m

B
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ˆ , 

where B

mR̂  is the Bayesian estimate of risk for m-th leaf: 

B
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gamma function, operator 
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denotes the summation  

over all ),( )2()1(

mm nn  such that Nn
i

i
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Note that these estimations are renewed after each 

stage of planning. The Dirichlet parameters are updated 

using the known property of a posteriori Dirichlet 

distribution: s| ~Dir(
)2()2()1(

1

)1(

1 ,..., MM ndnd  ). 

The expression (2) is used in (1) as an estimate of risk 

for correspondent subregion. 

4. EXPERIMENTAL RESULTS  

To test the algorithm of planning, we used the 

procedure of statistical modeling. In the modeling, we 

aimed to compare adaptive algorithm with analogous non-

adaptive algorithm of decision tree construction (that can 

be viewed as the “adaptive” algorithm with only one 

number of stages).   

Test 1. The algorithms should discover the conceived 

two-dimensional pattern structure that has the form of a 

9×9 chessboard (Fig.1). The variables are continuous; 

white “cells” denote pattern 1, black “cells” denote 

pattern 2. In all the tests, we take the number of stages 

L=10 for adaptive strategy. The parameters  =  =0,1. 

The recursive method of tree construction with imbedding 

level equaled 1 was used. 

The results of the modeling are shown in Table 1. 

Here Perr denotes the estimate of risk for leaning sample, 

M denotes the number of leaves in resulting tree, N is 

total sample size (two variants of N were considered). 

One can see that for adaptive algorithm, both error and 

tree complexity is significantly smaller. 

Table 1. Results of Test 1 

N Adaptive 

algorithm 

Non-adaptive 

algorithm 

Perr М Perr М 

80 0,0172 29 0,3285 35 

90 0,0344 29 0,3902 41 

 

In Tests 2, we additionally assumed that all variables 

are of nominal type, and in Test 3 – that one of the 

variables is nominal, and another – continuous. The 

results of modeling are shown in Table 2. 

Table 2. Results of Tests 2,3 

N Adaptive 

algorithm 

Non-adaptive 

algorithm 

Test 2 

 Perr М Perr М 

50 0,0000 20 0,0263 19 

70 0,0172 29 0,0434 23 

Test 3 

60 0,0357 28 0,2800 25 

80 0,0781 32 0,2954 22 

 

It follows from these tables that adaptive algorithm 

produces decision trees with less error than non-adaptive 

algorithm under the same sample size and comparatively 

not very larger complexity.  

In Test 4, we consider 3-dimensional heterogeneous 

feature space, and the region having the form of 4x4x4 

cube. Variables X1, X2 are continuous, and X3 is nominal. 

The pattern structure is as follows: points inside a cube 

3x3x3 correspond to first class; outside – to second class 

(Fig.2).  

 

Fig.1 – Fragment of pattern structure for Test 1. 



Consider the following procedure: 

1. With adaptive algorithm, built decision tree R times, 

each time increasing sample size up to N. 

2. With non-adaptive algorithm, built decision trees R 

times, for fixed sample size N. 

The averaged results are given in Table 3. 

 

Table 3. Results of Test 4 

N R Adaptive 

algorithm 

Non-adaptive 

algorithm 

Perr М Perr М 

20 10 0,005 9 0,12 6 

40 20 0,009 10 0,016 8 

 

Thus, the experiments show that the adaptive 

algorithm gives more accurate decision under similar 

complexity. 

In Test 5, we aim to model the applied problem of 

evaluating the creditability of a bank client. Consider the 

following continuous variables: X1 – age,  X2 – income, X3 

– length  of service; and the discrete ones: X4 – presence 

of property, X5 – education. The values of forecasted 

variable Y={give credit; do not give credit}. The model of 

an expert decision is given in Fig. 3. 

 

 

For the given tree, we use the procedure that is 

analogous to one described for Test 4. The results of 

modeling are given in Table 4. 

 

 

 

Table 4. Results of Test 5 

N R Adaptive 

algorithm 

Non-adaptive 

algorithm 

Perr М Perr М 

25 10 0,0403 11 0,0717 13 

50 20 0,0399 18 0,0485 28 

100 30 0,0348 35 0,0519 39 

150 50 0,0287 44 0,0306 47 

 

We can see that adaptive algorithm gives better 

performance rates (less error and complexity) than non-

adaptive algorithm in this artificial model. 

5. CONCLUSIONS 

In this paper, we suggest the algorithm for adaptive 

construction of classification tree that can be applied in 

the situation when the active design of experiments is 

available. The results of statistical modeling with small 

number of observations and heterogeneous variables 

demonstrate the effectiveness of the proposed algorithm. 

It was shown that the adaptive algorithm gives more 

accurate predictions than the analogues non-adaptive 

algorithm and often produces more simple decisions. 
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Fig.2 – Pattern structure for Test 4  

(section by each value of X3) 

 

Fig.3 – Pattern structure for Test 5. 
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