
Supervised classification of the observation of spatial Gaussian 

process with known covariance function 

K. Ducinskas
1)

 

1) Klaipeda University, Department of Statistics, 92294 H. Manto 84, Klaipeda, Lithuania, 

kestutis.ducinskas@ku.lt 

Abstract: The problem of classification of spatial 

Gaussian process observation into one of two populations 

specified by different regression mean models and 

common known covariance function is considered. ML 

estimators of regression parameters are plugged in the 

Bayes discriminant function. The asymptotic expansion of 

the expected error rate associated with Bayes plug – in 

discriminant function is derived. Numerical analysis of 

the accuracy of the approximation of the expected error 

rate based on derived asymptotic expansion in the small 

training sample case is carried out. This approximation is 

proposed as optimality criterion function for spatial 

sampling design. 

Keywords: Bayes discriminant function, spatial 

correlation, expected error rate. 

1. INTRODUCTION 
In classical discriminant analysis (DA) sometimes 

called supervised classification, the observations to be 

classified and observations in training sample are 

assumed to be independent. However, in practical 

situations with temporally and spatially distributed data 

this is usually not the case. Data that are close together in 

time or space are likely to be correlated. Thus, to include 

temporal or spatial dependencies in the classification 

problem is very important. 

When populations are completely specified an optimal 

classification rule in the sense of minimum 

misclassification probability is the Bayesian classification 

rule. In practice, however, the complete statistical 

description of populations is usually not possible. 

Training sample is required for the estimation of the 

probabilistic characteristics of both populations. When 

estimators of unknown parameters are used, the 

expressions for the expected error rate are very 

cumbersome even for the simplest procedures of DA. 

This makes it difficult to build some qualitative 

conclusions. Therefore, asymptotic expansions of the 

expected error rate are especially important. 

Many authors have investigated the performance of 

the plug-in version of the BCR when parameters are 

estimated from training samples with independent 

observations, or training samples where observations are 

temporally dependent (see e.g., [1, 2]). Switzer [3] was 

the first to treat classification of spatial data, a work that 

was extended in [4]. However, neither of these authors 

analyze the error rate of classification. Šаltytė and 

Dučinskas [5] derived the asymptotic expansion of the 

expected error rate when classifying the observation of a 

univariate Gaussian random field into one of two classes 

with different mean models and common variance. This 

result was generalized to multivariate spatial-temporal 

regression model in Šaltytė-Benth and Dučinskas [6]. The 

influence of the statistical dependence among training 

sample observations (stationary time series, Markov 

dependence, autoregressive dependence) the performance 

of the Bayes Discriminant function is presented in the 

monograph written by Yu. Kharin [7]. However, in these 

papers the observation to be classified was assumed 

independent from training samples in all publications 

listed above. 

In this paper, both restrictions are deleted, i.e. 

interclass spatial correlations and spatial correlations 

between observation to be classified and training sample 

assumed are not equal zero. Performance of the plug-in 

linear discriminant function when the parameters are 

estimated from training sample formed by classified 

observations of Gaussian random field is analyzed. We 

use the maximum likelihood (ML) estimators of unknown 

parameters of means and common variance assuming that 

the spatial correlation is known. Similar problems for 

group spatial classification are considered in [8]. 

 

2. THE MAIN CONCEPTS AND DEFINITIONS 
 The main objective of this paper is to classify the 

observations of spatial Gaussian process 

  mRDssZ : . 

The model of observation  sZ  in population l  is 

     ssxsZ l   ,          

where  sx  is a 1q  vector of non random regressors 

and l  is a 1q  vector of parameters, 2,1l . The 

error term is generated by zero – mean stationary spatial 

Gaussian process   mRDss :  with covariance 

function defined by nuggetless model for all Dus ,  

       2,cov  usrus  ,       

where  usr   is the spatial correlation function and 

2 is variance as a scale parameter. 

 Consider the problem of classification of the 

observation  00 sZZ   into one of two populations 

specified above with given training sample T . Training 

sample T is specified by  21,TTT  , where lT is the 
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1ln vector of ln  observations of  sZ from l, 

2,1l , 21 nnn  . 

Then the model of T  is 

EXT               

where X  is the qn 2 design matrix,  21,   

and E  is the n-vector of random errors that has 

multivariate Gaussian distribution  RNn
2,0  .  

The design matrix X  in (3) is specified by 

21 XXX  , 

where symbol   denotes the direct sum of matrices and 

X  is the qnl   matrix of regressors for lT , 2,1l . 

Denote by 0r  the vector of correlations between 

0Z and T . Since 0Z is correlated with training sample, 

we have to deal with conditional distribution of 0Z  given 

tT  with means 
0
lt and variance 

2
0t  that are defined 

by  

    XtxtTZE lllt  00

0 ; , 2,1l     (1) 

  ktTZV lt

2

0

2

0 ;   ,  (2) 

where 

 00 sxx  , 1
0

 Rr , 

0
1

01 rRrk  .    

Under the assumption that the populations are 

completely specified and for known prior probabilities of 

populations 1 and  1212  , the Bayes 

discriminant function (BDF) minimizing the probability 

of misclassification (PMC) is formed by the log-ratio of 

conditional densities 

       







 2

0

0

2

0

1

0

2

0

100 /
2

1
tttttt ZZW , (3) 

where  21 /ln   . 

In practical applications the parameters of the p. d. f. 

are usually not known. Then the estimators of unknown 

parameters can be found from training samples taken 

separately from 1 and 2. When estimators of unknown 

parameters are used, the plug - in version of BDF (BPDF) 

is obtained. 

Let, 
0
1€T ,

0
2€ T be the estimators of 0

1T , 0

2T  

respectively, obtained by replacing  in equation (1) with 

their estimator €  based on T . 

The BPDF is obtained by replacing the 

parameters € in (3) with their estimators. Then the BPDF 

for random T  is 

         







 2

0000 /€€
2

1€€; kGxHxXTZZWT ,(4) 

with  qq IIH , and  qq IIG  , , where qI denotes 

the identity matrix of order q. 

Definition 1. The actual error rate for BPDF is defined as 

  



2

1

0
€€

l

ll PP  ,          (5) 

where, for 2,1l , 

    lT
l

Tl ZWPP  0€;1€
000  ,     (6) 

is the conditional probability that  €;0ZWT  misclassifies 

0Z when it comes from l (conditional probability is 

based on conditional distribution of 0Z with mean 
0
lT  

and variance 
2
0T ). 

In the considered case, the actual error rate specified 

in (5), (6) for  €;0zdB  can be rewritten as 

   



2

1

€€

l

ll QP   ,          

where    is the standard normal distribution function, 

and 

    






 










 kGxxGGxbaQ l

l

l  €€€€1€
00

2

0 , 

where for 2,1l  

 Xxa ll  0 , 2/0HxXb  .     

Definition 2. The expectation of the actual error rate with 

respect to the distribution ofT , designated as   €PET , is 

called the expected error rate (EER). 

In this paper we use estimators of   based on T  

  TRXXRXX 111€            

It is easy to show that 

  ,~€
2qML N ,   112  XRX ,   (7) 

Put 

   22

0

2

0  kGx .         (8) 



Let  Rmax be the largest eigenvalue of R  and let 

   be the standard normal distribution density function. 

 

3. THE ASYMPTOTIC EXPANSION OF EER 

Make the following assumptions: 

(A1)   VXXn  1
, as n , where V  is 

positively definite qq 22  matrix with finite 

determinant; 

(A2) qXrank 2)(  ;    vRmax , as n ; 

(A3) unn 21 ,as 21,nn ,  u0 . 

Theorem 1. Suppose that observation 0Z to be classified 

by BPDF given in (4) and let assumptions (A1) - (A3) 

hold. Then the asymptotic expansion of EER is 

        2
11

2

1

12/ nOCQQPE
l

llT  


 ,  (9) 

 where for 2,1l  

  00 /12/  llQ ,         

kC /0  , 

 2

00 2  GHxX  .  

Proof. Expanding  €P  in the Taylor series 

about points  €  we have 

  3
€€€

2

1€€ RPPPP       (10) 

where 3R is Lagrange remainder. 

Taking the expectation of the right side of (10) and 

using (7) we get 

      3
€

2

1
€ REPtrPPE TT   .    (11) 

Note that 

  2

0011 /€ kxGGxQP        (12) 

Remember, that Lagrange remainder 3R is the third 

order polynomial with respect to the component of €  . 

Third order partial derivatives of  l€  with respect 

to €  is bounded by the uniformly integrable functions in 

the same neighborhood.  

So we can conclude that 

   2
3 1 nORET  .         (13) 

Putting (12) - (13) into (11) we complete the proof of 

the theorem.  

It is easy to notice that this formula agrees with the 

formulas derived before by other authors (see e.g., [2]). 

The approximation of EER is formed by dropping the 

remainder from the right-hand side of (9). Denoting it by 

AER we have 

    


2

1
11 2/

l
ll CQQAER      (14) 

The values of AER can be considered as natural 

measure of the performance or the optimality criterion 

function of the spatial sampling design for supervised 

classification.  

 

4. EXAMPLE AND DISCUSSIONS 

Numerical example is considered to confirm the 

accuracy of the approximation based on proposed 

asymptotic expansion of the expected error rate in the 

finite (even small) training sample case. 

In this example, observations are assumed to arise 

from univariate spatial Gaussian process on D  with 

unknown constant mean and an isotropic exponential 

correlation function given by    /exp hhr  .  

With an insignificant loss of generality the cases with 

1m , 021 nnn   and 5.021   are considered. 

The Machalanobis distance between marginal 

distributions of 0Z  is specified by    /21   

Then from (8) it follows that k/0  , 0 . 

Denote theoretical values of EER by TER. They are 

obtained by numerical integration with MAPLE 9.5. 

Assume that D is a 55  square grid points on 2

R  

with unit spacing. 

For greater interpretability, correlation  hr  function 

is reparametrized as   h
hr  where   represents the 

correlation between adjacent points in D . Using             

K-optimal sampling design (see [9]) for  1;25.0  and 

221  nn we have 

    4,3,3,01 D ,     3,4,0,12 D  

where iD is the set of points in D , where training sample 

iT  is taken, 2,1i . 

Let the observation to be classified is taken at point 

 2,20 s . 

The values of AER (14) and the values of index of 

relative accuracy of proposed asymptotic expansion 

specified by 

EEREERAER /  

are given in Table 1 for various values of and for training 

sample design described above. 

Independent observations case  0  is included in 

Table1 in order to estimate the effect of the spatial 

correlation to the expected error rate. 



Table1 shows that AER values increases with spatial 

correlation. 

Analyzing the content of the Table1 we can conclude 

the proposed approximation of EER based on derived 

asymptotic expansion is sufficiently accurate even in 

small training sample  4n  case, because the values of 

the index of relative accuracy is not so large 

  25848.0;0241.0 . It is interesting to notice that   

attains its minimal and maximal values (these values are 

underlined in the Table1) in the same case with strongest 

dependence among observations (i.e., 9.0 ) but with 

different degree of separation between populations (i.e., 

3.0 and 6.0 ). It is to be noted that in case of 

strongly separated populations  1  the proposed 

approximation often is more accurate, than in case of 

close populations  1 . 

 AER         AER           

  = 0   = 0.25 

0.2 0.46513 0.05910 0.46352 0.06198 

0.6 0.39639 0.12350 0.39174 0.13057 

1.0 0.33054 0.13503 0.32337 0.14497 

1.4 0.26929 0.11267 0.26036 0.12446 

1.8 0.21400 0.07451 0.20419 0.08703 

2.2 0.16562 0.03693 0.15578 0.04898 

2.6 0.12465 0.01061 0.11546 0.02105 

3.0 0.09109 0.00141 0.08304 0.00632 

   = 0.5   = 0.7 

0.2 0.45788 0.07155 0.44693 0.08900 

0.6 0.37549 0.15162 0.34448 0.18464 

1.0 0.29842 0.17120 0.25234 0.20497 

1.4 0.22948 0.15163 0.17516 0.17812 

1.8 0.17049 0.11192 0.11491 0.12797 

2.2 0.12223 0.06952 0.07109 0.07652 

2.6 0.08446 0.03648 0.04141 0.03823 

3.0 0.05619 0.01638 0.02268 0.01613 

   = 0.8   = 0.9 

0.2 0.43512 0.10673 0.40788 0.14390 

0.6 0.31204 0.21332 0.24227 0.25848 

1.0 0.20702 0.22758 0.12200 0.24158 

1.4 0.12642 0.18748 0.05144 0.16326 

1.8 0.07075 0.12474 0.01799 0.08168 

2.2 0.03617 0.06730 0.00519 0.03076 

2.6 0.01685 0.02970 0.00123 0.00912 

3.0 0.00714 0.01091 0.00024 0.00241 

Table 1. Values of AER and   for the K-optimal 

sampling design with 221  nn   and 5.021    

So the results of numerical analysis give us strong 

arguments to hope that proposed asymptotic expansion 

will yield useful approximations of expected error rate of 

classification of spatially correlated Gaussian 

observations in finite training (even small) sample case. 
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