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Abstract: In this paper we advance the phase plane 

method for analysis of fluorescence intensity decays to 

take into account the presence of such instrumental 

artifacts as time-uncorrelated background radiation and 

time shift between instrumental response function and 

sample fluorescence intensity decay. The developed non-

iterative algorithm does not require prior selection of 

initial guesses and ensures accurate estimates for  

parameters. The results of simulation experiments are 

presented to demonstrate the applicability of the 

developed method.  
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1. INTRODUCTION 

Study of structure and dynamics of molecular systems 

in biology, chemistry and medicine requires application of 

informative and very sensitive experimental methods. 

Time-resolved fluorescence spectroscopy is one of the 

most widely used techniques employed for such 

investigations [1, 2, 3]. Among experimental 

fluorescence spectroscopy methods that are applied for 

getting information about the sample under study the best 

known is time-correlated single photon counting (TCSPC) 

[1]. This experimental approach is used to measure as 

single fluorescence decays [1] so fluorescence decay 

images in Fluorescence Lifetime Imaging Microscopy [4]. 

Sample fluorescence decay and instrumental response 

function (IRF) measured by this method are usually 

subjected to the influence of experimental distortions [2, 

3] which can hardly be removed even in optimized 

experimental setups. Therefore, an important task is to 

develop appropriate analysis methods that can explicitly 

take into account the presence of instrumental distortions 

in the measured data. 

The aim of the fluorescence decay analysis is to obtain 

the estimations of fit parameters that characterize the 

sample and belong to the selected model. For many 

molecular systems the fluorescence dynamics can be 

adequately approximated by the sum of exponentials [1]. 

The common approach that is frequently used to estimate 

unknown parameter values is based on least squares 

method. In this method the fit parameter values are 

searched to minimize the chi-square statistical criterion 

used to estimate the conformity between measured 

fluorescence decay and theoretical curve generated by the 

model [1]. The least squares method requires the 

application of iterative optimization routines [5, 6] for the 

models that are nonlinear with respect to the fit 

parameters (for example, multi-exponential model). The 

iterative algorithms are general enough to take into 

account instrumental distortions that present in measured 

data [2, 3]. However, the efficiency of these routines 

substantially depends on the initial guesses that should be 

selected for the fitted parameters. If the initial guesses are 

chosen far from their optimal values iterative fitting can 

be very time consuming. Moreover, if behavior of 2  is 

complex in the space of fit parameters the iterative 

procedure with inadequate initial guesses can be trapped 

in the local minimum thus delivering biased estimations 

for parameters. 

Along with the iterative fit algorithms that can be 

applied in a similar way to fit fluorescence decays by 

different models, a number of non-iterative approaches 

have been developed for particular models. The common 

idea that underlies these methods consists in specific 

transformation of the mathematical model. Taking into 

account particularity of the model makes these algorithms 

fast and independent of the initial guesses. For the multi-

exponential model, the most often used non-iterative 

methods are the Laplace transform method [7], method of 

moments [8], method of modulating functions [9] and 

phase plane method [10]. The influence of the 

instrumental distortions has to be explicitly accounted in 

these methods to ensure correct data processing. Such 

corrections so far have been made only for the Laplace 

transform method [7] and method of moments [8]. 

However, these methods require careful selection of the 

additional parameters (the parameter of transformation for 

the Laplace transform method and the cut-off ratio for the 

method of moments) that can greatly affect the fit as 

shown in [11, 12]. The phase plane method has been 

proven to be one of the most rigorous non-iterative 

algorithms, which does not require any extra information.  

In this paper we revise the phase plane method for the 

analysis of fluorescence intensity decays obtained in the 

presence of time-uncorrelated background radiation and 

time shift between sample decay and instrumental 

response function. 

2. METHOD 

As the instrumental response function in TCSPC 

experiment differs from the delta function, the measured 

fluorescence intensity decay of the sample is represented 

by the convolution integral: 

     tItgtf  , (1) 

where  tI  is an impulse response function of the sample; 
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 tg  is an IRF obtained in a separate measurement where 

the sample is replaced by the scatter [13]. The multi-

exponential impulse response  tI  takes the form: 
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where n  is the number of exponentials, ka  and k , 

nk ,,1  are the amplitudes and decay times, 

respectively. The aim of the fit is to find estimations of 

ka  and k . 

According to the phase plane method [10], the 

convolution integral (1) with the multi-exponential 

representation (2) is equivalent to the integral equation: 
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Coefficients nkck ,,0,   and nkrk ,,1,   in 

equation (3) should be fitted and may be further used to 

estimate k  as roots of the polynomial [10]: 
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and to estimate ka  as: 
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If instrumental distortions are present, the undistorted 

sample fluorescence intensity decay  tf  and IRF  tg  

can be expressed through the corresponding distorted 

functions. Therefore we can modify equation (3) to take 

into account new representation of  tf  and  tg . 

We consider two types of instrumental distortions in 

this paper. The first is the time shift between sample 

fluorescence decay and IRF. As IRF is measured on the 

excitation wavelength whereas sample fluorescence decay 

is measured on the emission wavelength, fluorescence 

decay is shifted to the red side of spectra (Stocks shift 

[1]). Photons with different wavelengths have different 

speeds in monochromator and different transition times in 

photomultiplier (transition time of photons with longer 

wavelength is longer). The second distortion is time-

uncorrelated background added to the sample 

fluorescence decay and IRF. This can be due to, for 

example, dark noise of the detector. 

If we combine these two types of distortions the 

undistorted IRF will be defined as: 

     tgtg * , (7) 

where   denotes a shift between sample and IRF curves, 

  is a time uncorrelated background in IRF and  tg *  is 

the distorted IRF. 

By expanding function  tg *  in Taylor series one 

obtains: 
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As the expansion in equation (8) is truncated by the two 

terms of Taylor series, such approximation can be used 

when   is relatively small. Substituting equation (8) in 

eq. (7)Ошибка! Источник ссылки не найден. yields: 

       


 tgtgtg ** , (9) 

Undistorted sample fluorescence intensity decay is 

defined as follows: 

     tftf * , (10) 

where   is a time-uncorrelated background in sample 

fluorescence decay and  tf *  denotes distorted sample 

fluorescence intensity decay. 

Now functions  tFk  and  tGk  in (4) can be 

expressed in terms of their distorted counterparts. 

Substituting (9) and (10) into (4) we get: 
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where  tFk

*  and  tGk

*  are defined as  
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Substituting equations (11) into (3) yields: 
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where 010  nrr . Equation (13) can be rewritten using 

new designations: 
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where   !kttT k

k   and coefficients k

F

k cX  , 

kk

T

k crX    and 1 kk

G

k rrX  ( nk 0 ) depend 

only on parameters of the multi-exponential model, ka  

and k  ( nk 1 ), and distortion parameters  ,   and 

 . 

Equation (14) is a linear functional relationship with 

respect to the coefficients F

kX , T

kX  and G

kX  

( nk 0 ). Since  tFk

*  and  tGk

*  are functions of 

measured data that are distorted by statistical noise, the 

left-hand side of equation (14) will never be exactly equal 

to 0. Therefore the coefficients F

kX , T

kX  and G

kX  can be 

found using the linear least-squares method [14, 15] by 

minimizing the quadratic form: 
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where N  is a number of points in measured data. In order 

to avoid trivial zero solution an additional restriction to 

the coefficients 100  cX F  should be imposed. 

Since coefficients F

kX , T

kX  and G

kX  have been 

found, the parameters of multi-exponential model, ka  and 

k  ( nk 1 ), and the distortion parameters  ,   and 

  can be calculated. The shift parameter   can be 

obtained as one of the roots of polynomial: 





n

k

G

k

k X
0

0 , (16) 

Taking into account that 00 r  and 10 c , the time-

uncorrelated background   in the sample fluorescence 

intensity decay can be calculated using coefficient TX 0 : 

TX 0 , (17) 

Since the shift parameter   has been identified from 

equation (16) coefficients kr  ( nk 1 ) can be restored 

as: 
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The time-uncorrelated background, in IRF is estimated as: 
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As soon as coefficients F

kk Xc   and kr  are known from 

(18) we can find the decay times k  and pre-exponential 

factors ka from  equations (5) and (6). 

3. TESTING 

Standard phase plane method (3) and phase plane method 

with corrections for instrumental distortions (13) have 

been implemented and tested on simulated data to prove 

the applicability of the proposed algorithms. Each 

simulated data set contains instrumental response function 

and sample fluorescence decay generated at 512 time 

channels. The width of time channel is 0.04. All time 

values are expressed in relative units. The IRF  tg  is 

modeled as [3]: 

    )1.1exp(6.0exp tttg   (20) 

Sample fluorescence decay  tf  is calculated as a digital 

convolution of discrete representation of IRF  tg  (eq. 

(20)) and sample impulse response function  tI  (eq. (2)). 

In all simulations, we use bi-exponential (n = 2, 

67.01 a , 11  , 33.02 a , 22  ) function for 

 tI . The instrumental distortions are implemented by 

shifting sample fluorescence decay to the right with 

respect to IRF and by adding time-uncorrelated 

background to both  tg  and  tf . Finally, statistical 

noise is added to  tg  and  tf  by rescaling them to the 

predefined maximum values (10
4
 for IRF and 5*10

3
 for 

sample decay curve) and further replacing the exact 

values of both curves at all time points by realizations of 

Poisson random variable with the mean value equal to the 

corresponding exact value. 

Each simulation experiment consists of analyzing 100 

simulated data sets, each one with the different realization 

of statistical noise. After analysis of each data set the 

estimated parameters of multi-exponential model and 

distortion parameters are obtained and stored to calculate 

the mean values: 
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and the variance: 
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where ip  are the estimators obtained after the analysis of 

the i -th data set. ip  can be substituted either by one of 

multi-exponential model parameters (either ka  or k , 

nk 1 ) or by one of distortion parameters (  ,   

or  ). 

The results of simulation experiments are presented in 

table 1 for different combinations of the distortion 

parameter values (  ,   and  ). The results show that 

the developed modification of the phase plane method is 

capable of correcting the instrumental distortions ensuring 

accurate estimates for the double-exponential model 

parameters as well as for the distortion parameters. The 

estimates obtained using the modified algorithm are more 

accurate than the corresponding values calculated with 

standard phase plane method at all tested time shifts and 

time-uncorrelated backgrounds. Moreover, at larger 

values of the time shift and time-uncorrelated background 

the standard phase plane method can not resolve two 

exponentials at all. 



Table 1. Double-exponential fit by the standard phase plane method (PPM, eq. (3)) and phase plane method with 

corrections for instrumental distortions (PPMD, eq. (13)). Sample decay peak channel is 5*103 counts. IRF peak channel 

is 104 counts. Number of time channels is 512. Width of a channel is 0.04. M is the mean value of the estimator (eq. (21)),  is 

the standard deviation of the estimator (eq. (22)). 

True values Method Estimations 

 , 

counts 

, 

counts 

 a1 

(0.67) 
1 

(1.0) 

a2 

(0.33) 
2 

(2.0) 

 , 

counts 

, 

counts 

0 0 0 PPM M 0.67 1.00 0.33 2.01 - - - 

 0.035 0.039 0.035 0.054 - - - 

PPMD M 0.68 1.01 0.32 2.04 0.005 7.7 5.0 

 0.079 0.087 0.079 0.144 0.0086 8.98 6.52 

0.020 50 25 PPM M 0.54 1.01 0.46 1.79 - - - 

 0.065 0.065 0.065 0.055 - - - 

PPMD M 0.69 1.02 0.31 2.06 0.020 44.1 20.1 

 0.078 0.087 0.078 0.170 0.0148 16.0 11.3 

0.020 100 50 PPM M 0.99 1.41 0.01 17.48 - - - 

 0.004 0.014 0.004 32.99 - - - 

PPMD M 0.68 1.01 0.32 2.05 0.025 81.9 36.5 

 0.074 0.082 0.074 0.165 0.0131 14.7 10.3 

0.040 50 25 PPM M 0.84 1.29 0.16 2.17 - - - 

 0.056 0.040 0.056 0.146 - - - 

PPMD M 0.70 1.02 0.30 2.07 0.039 52.2 26.1 

 0.075 0.083 0.075 0.152 0.0149 14.4 10.2 

0.040 100 50 PPM M 
unresolved 

- - - 

 - - - 

PPMD M 0.70 1.03 0.30 2.08 0.038 103.4 51.9 

 0.073 0.076 0.073 0.146 0.0138 14.0 9.8 

 

Another advantage of the modified algorithm, as 

compared to the standard one, is that it also gives 

reasonable estimates for the instrumental parameters (time 

shift and background), which can be considered as 

valuable supplementary information for the experimenter. 

4. CONCLUSION 

In this paper we describe the algorithm of phase plane 

method corrected for accounting the presence of such 

instrumental distortions as time-uncorrelated background 

and time shift between sample fluorescence intensity 

decay and instrumental response function. 

The undertaken testing shows that in contrast to 

standard phase plane method proposed algorithm allows 

to obtain acceptable estimations for multi-exponential 

model and distortion parameters at different levels of 

instrumental distortions. 
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