
Using Java to prototype a H.264/AVC decoder

Marek Parfieniuk
1)

, Alexander Petrovsky
1)

, Alexei Petrovsky
2)

1) Department of Real-Time Systems, Bialystok Technical University,

Wiejska 45A, 15-351 Bialystok, Poland,

marekpk@wi.pb.edu.pl, palex@bsuir.by, http://aragorn.pb.bialystok.pl/~marekpk

2) Computer Science Department, Belarusian State University of Informatics and Radioelectronics,

Brovki 6, 220013, Minsk, Belarus,

petrovsky@bsuir.by, http://www.bsuir.by

Abstract: This paper presents our experiences in using

Java to prototype a H.264 decoder and to develop

accompanying tools: GUI-based diagnostic applications

and demos of subalgorithms. The project is aimed at

preparing a reliable basis for implementing the video

coding standard in hardware. The pros and cons of the

Java programming language are discussed in terms of

developing both such advanced DSP algorithms and

applications using them. Especially, high productivity is

pointed out as an advantage of Java over C/C++, which

is related not only to the language itself but also to the

rich toolset provided as the bundle of the JDK and

NetBeans.

Keywords: H.264, decoder, Java, implementation.

1. INTRODUCTION

Recommended by both ITU-T and ISO/IEC [1-6],

H.264/AVC (Advanced Video Coding: MPEG-4 Part 10)

is the most recent and innovative standard of video

coding, which has widespread industry adoption as

a foundation of new multimedia standards, services, and

products. Especially, it has been chosen to be used for

Blu-ray Disc, digital broadcasting via DVB, 3GPP mobile

communication, teleconferencing, and media streaming

over the Internet.

This huge application area is a consequence of the

great flexibility of H.264, which was designed to be

network-friendly [wiegand.03.oot]. The encoder, which is

equipped with a lot of options and parameters, allows its

output bitstream to be customized in order to best fit a

given application. Especially, the stream can be adjusted

to display resolution and computational power of end-user

terminals, and bandwidth usage can be traded off for

decoded image quality.

Another advantage of the codec over its predecessors

is much lower usage of bandwidth, as H.264 offers

compression efficiency even two times greater than that

of MPEG-2 Video (H.262), at comparable quality of the

reconstructed video. This has been achieved by

incorporating into the algorithm the most notable and

recent techniques of video coding, which, however,

require increased computational load [6, 8]. In particular,

decoding can require even 4 times more operations than

that of MPEG-2.

In recent years, there is a significant effort to build

infrastructure that supports H.264. Real-time encoding

engines for broadcasting purposes, HDTV-sets, next-

generation media players, and mobile devices need

coprocessors that speed up particular stages of the

algorithm or, even better, chips that realize the entire

encoding or decoding task.

Implementing H.264 is not trivial for several reasons.

As the standard is not a simple extension of the previous

ones, very limited reuse of existing hardware and

software is possible. From another point of view, the

algorithm complexity makes design difficult, especially if

a small and energy efficient device is expected to operate

in real time. Finally, the standard still evolves, so that

code organization or chip architecture must be made

flexible, which allows it to be easily adopted to handle

future extensions of H.264 or to maximize performance in

a particular application.

The authors have undertaken the challenging task of

addressing these issues. They work on developing a new

flexible and optimized architecture of a H.264 decoder

that is computationally efficient and allows speed to be

traded off for resource consumption. The decoder

additionally has to be modularized and reconfigurable, so

that functionalities of new standard revisions can easily

be added without redesigning the whole system. We

expect at least simplified development of new circuits and

easy customization of a chip in order to best match

application requirements.

In order to complete the task, the team has decided to

design a new object-oriented model of the decoder from

scratch and implement it in software. The developed

classes, after testing the code, will define hardware

modules, whose functional verification can be based on

data generated using the software.

An accompanying decision was to use the Java

platform in object-oriented development. Applying this

advanced technology was expected to increase

productivity, to make results more reliable and reusable,

and to reduce investments. The issue of real-time

performance of prototype programs was pushed into the

background, as unnecessary in such circumstances.

The paper presents our motivations for using Java,

issues related to this decision, and the appealing results

obtained. It is shown that a methodology based on the

high-level language, with is supported by a rich toolset,

allows for quick prototyping of advanced DSP algorithms

like H.264 and for producing well-documented, self-

describing code which can serve as a basis for real-time

hardware implementation. Moreover an extensive easy-to-

use GUI-based environment for verification and testing

can easily be developed in parallel.

2. H.264 STANDARD

The H.264 video coding standard, also called

MPEG-4 Advanced Video Coding (AVC), has been

finalized in March 2003. Its development began in 1997

with the aim of achieving better coding performance

compared to up-to-data standards, particularly MPEG-2,

and greater flexibility from the point of view of network

applications. The Joint Video Team (JVT), a group of

experts of both ITU and ISO, has been formed, which is

responsible for developing and maintaining the standard.

Fig.1 shows the general scheme of a H.264 codec,

which, like the older standards, is a hybrid algorithm that

removes both spatial and temporal redundancy of video

signals by combining transform coding with motion-

compensated predictive coding. The main principle has

been left unchanged because better flexibility and

compression efficiency can be achieved by only

improving subalgorithms.

Motion can be estimated more precisely, and thus

compensated more effectively, with quarter-pixel

accuracy and fine-grained macroblock partitioning into

smaller units. Moreover, an in-loop deblocking filter

removes the blocking artifact before using a frame for

prediction, which further improves estimation accuracy.

Temporal redundancy is also better removed because it is

possible to use multiple (up to 16) reference frames. The

bidirectional prediction allows future frames to be

referenced in addition to past ones.

Removing spatial dependencies among pixels by a

decorrelating transform can be supported with multi-mode

intra prediction of a block using adjacent fragments of the

same frame. Moreover, transform size can be switched

between 4×4 and 8×8 in order to best fit macroblock

contents.

Finally, more effective methods of entropy coding

have been employed: CABAC (Context-based Adaptive

Binary Arithmetic Coding) and CAVLC (Context-

Adaptive Variable Length Coding.

All these techniques improve coding performance at

the price of increasing computational demands. The

complexity of H.264 is estimated to be 5-8 times that of

H.263, even though the standard uses efficient

multiplierless transforms to approximate the Discrete

Cosine Transform (DCT).

H.264 specifies several profiles, which address

various applications i.e. various trade-offs among quality,

bitrate, and computational requirements. The Baseline,

Main, and Extended profiles are of primary importance.

The first one has modest computational demands at the

price of quality, the second takes full advantage of the

coding algorithm, whereas the third is best suited to

streaming applications. Recently, the standard has been

extended toward higher fidelity (sample bit depth greater

than 8 bits) and scalable coding, as FRExt (Fidelity Range

Extension) and SVC (Scalable Video Coding) have been

added [marpe, kwon].

It is important that H.264 uses patented techniques,

and thus including an implementation of some of its

profiles into a commercial product requires paying

royalties to patent holders.

3. EXISTING SUPPORT FOR IMPLEMENTING

H.264

H.264 is described in a huge standard document [1],
whose several versions exist. This of 3/2005 amounts
343 pages, whereas that of 11/2007 consists of 564 pages,

which is mainly because of adding the SVC extension.

Deblocking Filter

Motion Estimation

Motion

Compensation

Transform

Scaling

Quantization

Scaling

Inv. transform

Entropy Coding

Input

video signal

Current

Reference

Frame Buffer

Intra Prediction Output

bitstream

Input bitstream

ENCODER

DECODER

Deblocking Filter

Motion Estimation

Motion

Compensation

Dequantization

Scaling

Inv. transform

Entropy

Decoding

Output video signal

Current/Reference

Frame Buffer

Intra Prediction

Fig.1 – General scheme of the H.264 codec.

Especially for non-experts in the field of video coding,

the document is very difficult to read and interpret
because it is not only complex but also written in a very

peculiar manner. All information necessary to create

interoperable software or hardware is provided, but there

are no suggestions how to implement it. Especially, there

is no word about the encoding process: only the bitstream

format and decoding process are specified using text,

tables and C-like pseudocode.

The document is hardly useful even for implementing

a H.264 decoder, because of far-reaching formalism,

widely-used cross-referencing, and the complexity of the

standard itself, which is manifested by a huge number of

options, definitions, and variables. Even the pseudocode

cannot be directly used as a basis for a solution, as it

describes only bitstream parsing, while decoding is

presented by means of text. Most of variables are not

clearly defined, so that their meanings and data types

must usually be deduced form several fragments of text.

As to document versions, it should be noted that apart

from adding extensions and correcting bugs, changes are

made in over whole text. In practice, this makes it

impossible to easily switch from one publication to

another. Moreover, some modifications are not well

documented, e.g. in the version 11/2007, the residual

colour transform has been removed without explicit

notification.

Careful following even subtle changes of the standard

is a must that makes development even more difficult. In

order to be up to date, designers must observe activities of

the JVT (which makes publicly available some draft

documents and reports on meetings) or, even better, to
participate in their works. Either approach is acceptable
only for big companies.

In order to help developers, the standard is supported

with a reference software [9, 10], which is developed by

the JVT. It is called the Joint Model (JM) and consists of

both encoder and decoder written in the C language. They

allow custom standard implementations to be validated,

provide encoding statistics and video quality assessment,

but are not very helpful in developing hardware or

software.

The huge piece of code (over 50000 lines) is neither

well documented nor organized. Only a user guide is

provided, not thorough design documentation. Comments

are placed sparingly, and abbreviated identifiers are

unclear. Pointers, type casting, and global variables are

widely used, which makes debugging difficult. The code

is also far from a clear object-oriented design, even if it is

modularized by grouping related routines into separate

files. It is also not optimized for performance.

At the time of writing these words, the version 15.1 of

the JM is accessible. Frequent updates are limited to

adding extensions and fixing bugs. The code seems not to

be refactored in order to improve its quality. In [5], it is

explained that this is a consequence of the politics the

JVT selected to develop the standard. Every proponent of

an option or extension, after proving its usefulness and

then finding acceptance, must integrate it with the

existing reference software. Obviously, he has no interest

in improving someone else’s code, the more so because

the result will be available to everybody for free, whereas

a good implementation of H.264 still has commercial

value for many companies.

Because of all of these, understanding and taking the

advantage of the reference software is very difficult even

for experienced programmers. It is even troublesome to

extract data from key points of processing pipeline, which

is necessary for verification purposes. Detailed tracing of

bitstream contents is supported, but accessing data of the

algorithm core requires code modification, which is not

easy for the reasons mentioned above.

It should be emphasized that our opinion about the

reference code conforms those of other developers, which

are reported over the Internet [11, 12].

Internet forums and mail-lists, like [11] or [12] are
good sources of interesting information for a developer.
They are active, moderated by practitioners, and contain a
lot of knowledge in the form of brief messages, free of
embellishments. Others' experiences and advices are very
useful in understanding standard nuances, explaining
doubts, solving problems and planning development.

Another noteworthy fact is that there exist initiatives

to develop open-source H.264 software: x264 [13] and

libavcodec [14]. Even though they outperform the JM in

terms of performance, it is also hardly to consider them as

a good and reliable basis for developing own hardware

solutions. Firstly, they also lack both object-oriented

design and in-depth documentation. Secondly, they are

not very credible in terms of both standard conformance

and development life-cycle: some options can be omitted

in order to simplify design, and similar initiatives often

became inactive even before reaching a mature state.

The journal papers [1-5] and book [6] about H.264

seem the best basis for beginning high-level design of the

decoder. They describe main principles, which is

sufficient to identify main classes and methods. Neither

the standard document nor reference software are helpful

in this regard, but they are an invaluable source of

technical details and nuances when switching to coding.

The document is more useful in implementing

subalgorithms, whereas the reference software allows for

testing them and explaining doubts.

As to testing, there are some analyzers of H.264

streams, like H264Visa [15], but from our point of view

they have clear disadvantages. First of all, they offer only

limited access to interesting points of the decoding

pipeline. Some data can be viewed via GUI, but there is

no mechanism to automatically translate them into a form

suitable for verification. As such programs are provided

without source code, it is impossible to extend them to

satisfy our needs. Additionally, they come at significant

prices and require Microsoft Windows, so that cannot be

run on Linux.

Putting together the above facts, we can conclude that

existing support for implementing H.264 is quite

extensive but very inconsistent and difficult to use. There

are no ready-to-use patterns, universal tools, and explicit

design insights. In order to develop a really efficient

hardware decoder in a reasonable time and without much

investment, one must develop his own architecture, work

methodology, and software tools.

Thus far our team worked in the fields of speech

coding and enhancement [16, 17], so that we had no much

earlier experiences with video codecs. Developing

dedicated software in parallel to hardware was a mean to

gain more practical knowledge about video processing

and to avoid bad decisions at hardware design.

4. JAVA AS A TOOL FOR IMPLEMENTING H.264

Implementing from-the-scratch such an advanced

algorithm as H.264 is a challenging task. In order to focus

only on architectural issues, it is important to avoid

problems with development and coding, in which

advanced tools are helpful [18, 19]. Especially, high

productivity is mainly related to early detection of bugs or

even better preventing them from arising. Apart from

desiring functionality, we expect tools to be accessible

free-of-charge, well supported, and easy to use.

Conservative approach of using the C language is

widely considered as of poor productivity. A lot of care is

necessary to write a reliable code and make it portable,

even between Windows and Linux. Memory management

is left to the coder, which distract him from the algorithm.

Due to limited type safety, many bugs are possible and

usually difficult to detect, especially those related to

exceeding array bounds, type casting, and pointers.

Much better is to use C++, which is a more advanced

language that well supports object-oriented design. In

spite of better type safety, a wide class of errors is still

possible, as pointer-based memory access and

management cannot be completely avoided.

Another approach is to generate code from

a schematic model, which is possible e.g. with Matlab-

Simulink. This completely prevents programming errors

but simultaneously make it difficult to customize and

extend generated code. Such tools are also expensive and

usually do not support well exporting projects or their

fragments to other development environments.

These facts have motivated us to develop H.264

software using Java: a language which recently focuses

attention of developers of real-time and embedded

systems [18-24].

Java has been developed in the mid 1990s by Sun

Microsystems with the aim of facilitating platform-

independent programming and improving productivity.

This modern object-oriented language has been equipped

with a lot of practical features such as threads, assertions,

built-in security, and automatic memory management.

Moreover, the Java Development Kit (JDK) is free and

comes with a huge set of libraries for different purposes:

from dynamic data structures and advanced string

manipulations to networking, Graphical User Interface

(GUI), or even multimedia [25]. Even an advanced Rapid

Application Development (RAD) environment, the

NetBeans, is provided.

Of course there are equivalent libraries and tools for

C/C++, but they are often costly and available as separate

items, so that much effort is necessary to configure and

maintain a developer workstation.

On the other hand, Java is more a technology than a

language, which is sufficiently powerful and universal to

be useful in almost all applications, except only those in

which performance and memory usage are critical.

The latter is because Java portability has been

achieved by making the language interpreted.

Compilation results in hardware-independent byte code

which is run on the Java Virtual Machine (JVM). This

piece of software obviously represents some execution

overhead, which is additionally unpredictably affected by

garbage collection of automatic memory management.

Moreover, even though byte code is itself compact,

even simplified versions of the JVM need hundredths

kilobytes of memory, whereas taking advantage of rich

libraries requires megabytes. This is often unacceptable in

embedded applications.

In addition to these problems, the peculiarities of

a target platform often make porting the JVM to it

difficult or at least not economically justified. Even on

PC, we have observed incompatibility issues. Strange

errors sometimes occur if an application compiled for

some version of the JVM is run using an older one.

In spite of difficulties, Java advantages sustain interest

in introducing Java to embedded and real-time systems

[18-24]. For example, Sun’s picoJava processor and

ARM9J with Jazelle coprocessor are examples of efforts

to implement an efficient hardware-accelerated JVM. On

the other hand, programming techniques are developed

which allow Java limitation to be overcame [21, 22].

Finally, Java is modified to satisfy specific application

needs.

Thus far, the main success of these efforts is the

popularity of the Java 2 Micro Edition (J2ME), a tailored

and thus lightweight programming platform for mobile

phones.

It should be emphasized that the aim of the present

work is to develop a software basis for implementing the

H.264 decoder in hardware. We do not use Java in an

embedded system. Nevertheless, our results can obviously

serve for the latter purpose, so that such their utilization is

conceivable in the future, in the context of Java 2 Micro

Edition (J2ME) and Java Media Framework (JMF) [25].

5. PROJECT RESULTS

Our project has reached the half-way point. An object

model of H.264 decoder has been developed, as well as

preliminary design of the corresponding hardware

architecture. Most of functionalities have prototype

software implementations. Some parts of the decoder, for

which codes had reached stable forms and had been

thoroughly tested, have been implemented in FPGA.

Interconnections among functional units and memory as

well as essential control logic have been also developed,

which is the first step in assembling the final chip.

Especially, the parser, VLC decoding, and transform

blocks are nearly finished. What is important, good

software prototypes allowed hardware engineers to

quickly understand what is expected and to construct the

equivalent digital circuits not only efficiently but also

optimally, i.e. high performance has been achieved at low

resource utilization. This will be described in future

papers.

Slice

DecodedReferencePictureMarking

SequenceParameterSetExtension

ReferencePictureListReordering

Demo_IndexScannerMacroblock

IndexScanner4x4BlockPlane

SubmacroblockPrediction

ResidualColourTransform

IndexScannerBlockPlane

IndexScannerMacroblock

PictureParameterQueue

NeighbouringBlockInfo

MacroblockStructure

PredictionWeightTable

IntraPredictionMode ResidualBlock

IntraPredictor

IndexScanMode

PictureParameters

MacroblockQueue

MacroblockReport ParsingException

Plane

PlaneConstructor

MacroblockType

PredictionModeBlockStructure

SequenceQueue

VUIParameters

AccessMode

InterPredictor

IndexScanner

Macroblock

ScalingMode

Predictor

SliceQueue

Transform

ScalingList

Prediction

Scaler

Sequence

Direction

MPDebug

Structure

NALType

Reporter

Function

Picture

Printer

ParserVLC

Type

NAL

Main Mode

Filter

Test

Fig.2 – UML diagram for the object model of H.264 decoder.

Most of classes have strictly determined numbers of

object instances. Obviously, there is only one stream

parser and VLC decoding engine, whereas most of the

remaining blocks of Fig.2 must be tripled in order to

decode luma and both chroma components using separate

pipelines, which can efficiently work in parallel.

Knowing number of objects of a particular class,

allows them to be preallocated as static fields and to exist

continuously during program execution. This significantly

reduces computational load related to memory

management and garbage collection. It seems that using

this technique is crucial for developing a Java-based

H.264 decoder that works in real time.

Another conclusion, which does not directly result

from the standard document, is that most of operations

can be performed without explicit integer multiplications.

The latter can widely be replaced with binary shifts,

possibly supplemented by additions.

As to data types, 16 bits (including sign) seem

sufficient to store variables related to decoding, but in

some cases, auxiliary results need 32 bits. Most of data

represented in the standard document as tables of integer

numbers can be efficiently packed into smaller numbers

of bits, which conserves resources.

Internal variables of decoding pipelines take not much

memory. Quantization tables and sample buffers for

transform and prediction purposes take most space, yet it

seems possible to incorporate them into a chip. The main

problem is in storing reference frames for inter-prediction,

which requires large out-of-chip memory. Some of known

decoders require encoders to limit the number of

reference frames depending on video resolution and

accessible storage space, and we will probably employ

this approach in our chip.

High fidelity extensions of H.264, in which samples

are represented using 10 or 12 bits, instead 8 bits as

usually, require specific memory architecture or wasting

space.

A notable result of the project is a platform-

independent diagnostic tool, which works in any

operating system equipped in the JVM, especially on

Linux. It reuses the code of the software decoder we have

developed, so that the latter can be tested and

demonstrated interactively via GUI. The tool consists of

two modules, whose main windows are shown in Fig.3

and Fig.4. The former allows H.264 streams to be

analyzed and restructured, in order to focus tests on

fragments that cause the decoder to fail. The second

module allows a single frame to be examined: decoding

correctness can be verified both visually and by following

dataflow step by step. The latter required a quite advanced

reporting mechanism to be developed, which can be

easily and consistently incorporated into decoder and

collects data in a synthetic form, so that they can be both

displayed on screen and exported to verification tools.

Reporting and verification tools still need to be

enhanced. Especially, filters are to be developed that

allow interesting information to be quickly extracted.

Another lacking functionality is automatic detection of

erroneously decoded frames in a long stream, and

macroblocks in a picture. Nevertheless, interactive testing

the programs support is sufficient in most cases.

Side-effects of our work are several applications that

demonstrate subalgorithms of H.264 and explain data

structures it uses. For example, Fig.5 shows the main

window of the tool that allows users to interactively study

Picture-Adaptive Frame/Field (PAFF) and Macroblock-

Adaptive Frame/Field (MBAFF) modes of accessing

image samples.

A final remark is that JavaDoc, a tool for generating

well-organized HTML documentation from code

comments, whose effect is shown in Fig.6, has proved

itself to be a very useful and effective communication

means, which allowed software developers to impart their

knowledge to designers of hardware modules, without

producing many extra reports.

Fig.3 – GUI diagnostic tool: stream analysis.

Fig.4 – GUI diagnostic tool: picture analysis.

Fig.5 – A tool for demonstrating different modes of sample

access (PAFF/MBAFF)

Fig.6 – JavaDoc generated class documentation.

7. CONCLUSION

Our case shows that having carefully selected tools

and building a suitable development methodology upon

them are essential for the success of a hi-tech project.

After analyzing possible approaches to H.264

development, we promote Java as both programming

language and entire technology that allows advanced DSP

algorithms to be prototyped with high productivity. Using

it we were able to quickly, in half a year, implement both

a software H.264 decoder and accompanying tools, even

though the team decided to do the work from scratch and

did not specialize in video processing. The well-

documented and well-organized code forms a basis for

developing a high-performance real-time hardware

implementation. The works are in progress and results are

expected soon.

8. ACKNOWLEDGEMENT

This work was supported by Bialystok Technical

University under the grant W/WI/8/08.

9. REFERENCES

[1] ITU-T. ISO/IEC. ITU-T Rec. H.264 Advanced video

coding for generic audiovisual services / ISO/IEC

14496-10 MPEG-4 AVC. ITU. Geneva 2003. [On-

line]. Available: http://www.itu.int/rec/T-REC-H.264

[2] T. Wiegand. G. Sullivan. G. Bjontegaard. A. Luthra.

Overview of the H.264/AVC video coding standard,

IEEE Trans. Circuits Syst. Video Technol. 13

(7) (2003). p. 560-576

[3] D. Marpe. T. Wiegand. G.J. Sullivan. The

H.264/MPEG4 Advanced Video Coding standard and

its applications. IEEE Commun. Mag. 44 (8) (2006).

p. 134-143

[4] S.-k. Kwon. A. Tamhankar. K.R. Rao. Overview of

H.264/MPEG-4 part 10. J. Vis. Commun. Image R.

2 (17) (2006). p. 186-216

[5] R. Schäfer. T. Wiegand. H. Schwarz. The emerging

H.264/AVC standard. EBU Tech. Review 12 (2003)

[6] I.E.G. Richardson. H.264 and MPEG-4 Video

Compression. Wiley. Chichester, UK, 2003. p. 305

[7] C.S. Kannangara. Complexity Management of

H.264/AVC Video Compression. PhD Thesis. The

Robert Gordon University, 2006

[8] Y. Chen. E. Li. X. Zhou. S. Ge. Implementation of

H.264 encoder and decoder on personal computers,

J. Vis. Commun. Image R. 17 (2006). p. 509-532

[9] H.264/AVC Reference Software. [Online].
Available: http://iphome.hhi.de/suehring/tml/

[10] ITU-T. ISO/IEC. ITU-T Rec. H.264.2 Reference
software for H.264 advanced video coding / ISO/IEC

14496-5 MPEG-4 Reference software. ITU. Geneva

2001.

[11] Mailing list for x246 developers. [Online].
Available: http://mailman.videolan.org/listinfo/x264-

devel

[12] Mp4-tech mailing list. [Online]. Available:
http://lists.mpegif.org/mailman/listinfo/mp4-tech

[13] The FFmpeg libavcodec library. [Online]. Available:

http://ffmpeg.org

[14] x264 a free H.264/AVC encoder [Online].
Available:
http://www.videolan.org/developers/x264.html

[15] H264Visa. [Online]. Available: http://www.h264-

visa.com

[16] M. Livshitz. M. Parfieniuk. A. Petrovsky. Wideband

CELP coder with multiband excitation and multilevel

vector quantization based on reconfigurable

codebook, Digital Signal Process. (OOO "KBWP",

Moscow, Russia) 2 (2005). p. 20-35

[17] A. Petrovsky. M. Parfieniuk. A. Borowicz. Warped

DFT based perceptual noise reduction system

Proc. 116th AES Conv. Berlin, Germany, 8-11 May

2004. Conv. Paper #6035
[18] J.A. Fisher. P. Faraboschi. C. Young. Embedded

Computing: A VLIW Approach to Architecture,

Compilers and Tools. Morgan Kaufmann/Elsevier.

San Francisco, CA, 2005. p. 712

[19] J. Labrosse. et al. Embedded Software: Know It All.

Newnes/Elsevier. Oxford, 2007. p. 792

[20] C.D. Locke. P.C. Dibble. Java Technology Comes to

Real-Time Applications, Proc. IEEE 7 (91) (2003).

p. 1105-1113

[21] P.C. Dibble. Real-Time Java Platform Programming.

Prentice-Hall. Englewood Cliffs, NJ, 2002. p. 352

[22] A. Wellings. Concurrent and Real-Time Program-

ming in Java. Wiley. 2004, p. 446

[23] J. Baker, A. Cunei, C. Flack, F. Pizlo, M. Prochazka,

& J. Vitek, A Real-time Java Virtual Machine for

Avionics: An Experience Report. Proc. 12th IEEE

Real-Time Embedded Technology Appl. Symp.

(RTAS). San Jose, CA, 4-7April 2006, p. 384-396

[24] A. Wellings. A. Burns. Real-Time Java. in Handbook

of Real-Time and Embedded Systems. Ed: I. Lee. J.Y.

Leung. S.H. Son. Chapman & Hall/CRC. Boca

Raton, FL, 2008. p. 12-1–12-19

[25] R. Gordon. S. Talley. Essential JMF: Java Media

Framework. Prentice Hall. Upper Saddle River, NJ,

1999

http://lists.mpegif.org/mailman/listinfo/mp4-tech

