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Time Dependence of the Intensity of
Diffracted Radiation Produced by a
Relativistic Particle Passing through a
Natural or Photonic Crystal
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Abstract

The formulas which describe the time evolution of radiation produced by a rela-
tivistic particle moving in a crystal are derived. It is shown that the conditions are
realizable under which parametric (quasi-Cherenkov) radiation, transition radiation,
diffracted radiation of the oscillator, surface quasi-Cherenkov and Smith-Purcell ra-
diation last considerably longer than the time 7, of the particle flight through the
crystal. The results of carried out experiments demonstrate the presence of addi-
tional radiation peak appearing after the electron beam has left the photonic crystal.

Introduction

At present, the processes of diffracted radiation of photons by relativistic parti-
cles passing through crystals (natural or artificial spatially periodic structures)
are intensively studied both theoretically and experimentally. Worthy of men-
tion are such types of diffracted radiation as parametric (quasi-Cherenkov)
radiation and diffracted radiation of a relativistic oscillator [1H3]. It should be
noted, however, that until now, theoretical and experimental analysis of radi-
ation produced by a relativistic particle passing through a crystal has focused
on spectral-angular characteristics of radiation. Nevertheless, it was shown
in [5L6] that because of diffraction, photons produced through radiation in
crystals have group velocity vf , which is appreciably smaller than the veloc-
ity v of a relativistic particle. As a result, the situation is possible in which
radiation from the crystal still continues after the particle has passed through
it [5L6]. This enables studying time evolution of the process of photon radi-
ation produced during the particle transmission through the crystal (natural
or photonic), or during the particle flight along the surface of such crystals. In
the present paper the formulas are derived, which describe the time evolution
of radiation produced by a relativistic particle moving in a crystal. It is shown
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that the conditions are realizable under which parametric (quasi-Cherenkov)
radiation, transition radiation, diffracted radiation of the oscillator, surface
quasi-Cherenkov and Smith-Purcell radiation last considerably longer than
the time 7, of the particle flight through the crystal, i.e., much longer than
7 <1077 s,

1 Spectral-angular distribution of radiation produced by a particle
transmitted through a crystal

Let us first recall the conventional consideration of the radiation process in
crystals [1118].

Both the spectral-angular density of radiation energy per unit solid angle W,
and the differential number of emitted photons dNjz,w = 1/hw - Wy, can be
casily obtained if the field E(7,w) produced by a particle at a large distance
7 from the crystal is known [3]
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The vinculum here means averaging over all possible states of the radiating
system. In order to obtain E(f’, w), Maxwell’s equation describing the interac-
tion of particles with the medium should be solved. The transverse solution
can be found with the help of Green’s function of this equation, which satisfies
the expression:
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Gy is the transverse Green’s function of Maxwell’s equation at ¢ = 1. It is
given, for example, in [19].

Using G, we can find the field we are concerned with

En(F,w) = / Gl 7, w)ZC—O; Gou (7, ) 3, (3)

where n,l = z,y, z, jo(7,w) is the Fourier transformation of the e-th compo-
nent of the current produced by a moving beam of charged particles (in the
linear field approximation, the current is determined by the velocity and the
trajectory of a particle, which are obtained from the equation of particle mo-
tion in the external field, by neglecting the influence of the radiation field on



the particle motion). Under the quantum-mechanical consideration the cur-
rent jo should be considered as the current of transition of the particle-medium
system from one state to another.

According to [3L§], Green’s function is expressed at r — oo through the
solution of homogeneous Maxwell’s equations E(7) (7, w) containing incoming
spherical waves:

lim G (7, 7, w) = er ZeiEg)s*(f’,w), (4)
5
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where €® is the unit polarization vector, s — 1,2, ¢* 1L &% L k.

If the electromagnetic wave is incident on a crystal of finite size, then at r — oo

and one can show that the relation between the solution Eﬁ(f
of Maxwell’s equation Et (k w) describing scattering of a plane wave by the

target (crystal), is given by:

* and the solution

(=)s= E( E) (5)

Using (3)), we obtain
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As a result, the spectral energy density of photons with polarization s can be
written in the form:
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Jo(,w) = /ei“tfo(flw)dt = €Q/€i“t77(t)5(77— 7(t))dt, (8)

where e() is the charge of the particle, ¥(¢) and 7(t) are the velocity and the
trajectory of the particle at moment ¢. By introducing () into () we get
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Integration in (Q) is carried out over the whole interval of the particle motion.
It should be noted that the application of the solution of a homogeneous
Maxwell’s equation instead of the inhomogeneous one essentially simplifies the
analysis of the radiation problem and enables one to consider various cases of
radiation emission taking into account multiple scattering.

Using equations ([)—(@)), one can easily obtain the explicit expression for the
radiation intensity and that for the effect of multiple scattering on the process
under study [3[89].

Consider, for example, the PXR radiation. Let a particle moving with a uni-
form velocity be incident on a crystal plate with the thickness L being LK LC,
where L. = (wq)~'/? is the coherent length of bremsstrahlung ¢ = 0 /4 and 0

is the mean square angle of multiple scattering. The latter requirement allows
neglecting the multiple scattering of particles by atoms. A theoretical method

describing multiple scattering effect on the radiation process is given in [10].

According to (@), in order to determine the number of quanta emitted by a
particle passing through the crystal plate, one should first find the exphc1t
expressions for the solutions ES )* As was mentioned above, the field E s

can be found from the relation E]% o = (E(j;) )* if one knows the solutlon

E](;r)s describing the photon scattering by the crystal.

In the case of two strong waves excited under diffraction (the so-called two-
beam diffraction case [I1]), one can obtain the following set of equations for
determining the wave amplitudes (see [12]):

k? ~(—)s ~(—)s
(— -1 —X3> EI(;T) CsXx I(; ) (10)

Here l;; = k+ 7, T is the reciprocal lattice vector, xo, x7 are the Fourier
components of the crystal susceptibility. It is well known that the crystal is
described by a periodic susceptibility (see, for example, [11]:

x(7) = Z:Xfexp(ﬁf’)- (11)

cs = €°¢%, where é°(€%) are the unit polarization vectors of the incident and

diffracted waves, respectively.

The condition for the linear system (I0) to be solvable leads to a dispersion
equation that determines the possible wave vectors k in a crystal. These wave



vectors are convenient to present in the form:

- —

o =% N7 * *
kus =k + K, N, Kus = ——€

where p =1, 2; N is the unit vector of a normal to the entrance crystal surface
which is directed into the crystal,

€1(2)s = i [(1+B1)xo — Pras] £+ % {[(1 — Bi)xo + Brap)?

~1/2
+45103XFX:T} : (12)

ap = (2k7 + 72)k2 is the off-Bragg parameter (ap = 0 if the exact Bragg
condition of diffraction is fulfilled),

g \7 = E ,YO — = . E + 7?
’)/:’I’L'N, Ny = -, 6:_7 ’)/:’I’LT'N, Nyr = —=
0= TR Ty T Tk + 7
The general solution of (I0) inside a crystal is:
— 2 — —
ES*(7) = [ Ay exp(ikius®) + & Ay exp(iks, )| (13)

p=1

Associating these solutions with the solutions of Maxwell’s equations for the
vacuum area, one can find the explicit form of E]%_)s(f’) throughout the space.
It is possible to discriminate several types of diffraction geometries, namely,

the Laue (a) and the Bragg (b) schemes are most well known.
(a) Let us consider the PXR in the Laue case.

In this case, the electromagnetic waves emitted by a particle in both the
forward and the diffracted directions leave the crystal through the same surface
(k. > 0,k, + 7, > 0), the z-axis is parallel to the normal N (where N is the
normal to the crystal surface being directed inside a crystal). By matching the
solutions of Maxwell’s equations on the crystal surfaces with the help of (I0),
(I2), (I3), one can obtain the following expressions for the Laue case:
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where
28215 — Xo
g = Fo "
12 2(525 - 515)
. CsX 7
=+
51’28 2(525 - 515)
1, if2>0
0(z) =
0, if 2 <0.

Substitution of (I4) into (9] gives for the Laue case the differential number of
quanta of the forward directed parametric X-rays with the polarization vector

€s:

d*NE, - e2Q%w
dwdQ — 4m2he3

(e°0)*

us
2

: (15)

% [ei(wflg;sﬁ)T —1]

where T = L/c, is the particle time of flight; & || [k7]; & || [k&1].

One can see that formula (3] looks like the formula which describes the
spectral and angular distribution of the Cherenkov and transition radiations
in the matter with the index of refraction n,, = k.,s/k. =1+ K, /k..

The spectral angular distribution for photons in the diffraction direction ET =
k + T can be obtained from (IZ]) by a simple substitution

gs — gsT: 25 - 615;57

X7Cs
Elys = Ty
1@ 2(513 - 523)

k= Kry e = Krps = ks + 7.

(b) Now let us consider PXR in the Bragg case. In this case, side by side with
the electromagnetic wave emitted in the forward direction, the electromagnetic
wave emitted by a charged particle in the diffracted direction and leaving
the crystal through the surface of the particle entrance can be observed. By
matching the solutions of Maxwell’s equations on the crystal surface with the
help of (I0), ([I2), (I3), one can get the formulas for the Bragg diffraction
schemes.



It is interesting that the spectral angular distribution for photons emitted in
the forward direction can be obtained from () by the following substitution,

25 - Tuss
0 252(1)5 — Xo

Y = = Z
o (222(1)s — X0) — (261205 — Xo)e' ™ (E2)s—2200)L

(16)

The spectral angular distribution of photons emitted in the diffracted direction
can be obtained from ([I3]) by substitution

. o - — g 0 ’L’iE sL
€s — €sr, k— k»r, k,us — k,u’rs; us€ 0T — ,7;57
where
, _ /BICSXT 1
T1@2)s = 2 (e9(1)s —€1(2)s) L ( 7)

(2e21)s — X0) — (2e12)s — Xo)ei70

Let us note that the above formulas fully describe parametric (quasi-Cherenkov)
radiation in natural and photonic crystals and they certainly include that con-
tribution to radiation, which goes over to ordinary transition radiation, if the
radiation is considered outside the region of diffraction reflection. A descrip-
tion of diffracted radiation of a relativistic oscillator is given in [IL2] and the
reference therein.

Let us take notice of the fact that in photonic crystals built from metal threads
with the diameter smaller than or comparable with A, the value of x(7) is
practically independent on 7. As a result, it is possible to effectively excite
radiation in, e.g., the terahetrz range in a lattice with a period of several
millimeters.

When a particle travels in a vacuum near the surface of a spatially periodic
medium, new kinds of radiation arise [13,[14] - surface parametric (quasi-
Cherenkov) X-ray radiation (SPXR) and surface DRO (see Figure [I). This
phenomenon takes place under the condition of uncoplanar surface diffraction,
first considered in [15].

The solution of Maxwell’s equation Eé”(?) in this case of uncoplanar surface
diffraction was obtained in [15]. It was shown that the surface diffraction in
the two-wave case is characterized by two angles of total reflection (several
angles in the case of multi-wave diffraction [16]). The solution obtained in [16]
contains the component, which describes the state that damps with growing
distance from the surface of the medium, both within the material and in the
vacuum, and which describes a surface wave, i.e., a wave in which the energy

flux is directed along the boundary of the surface of a spatially periodic target



photonic crystal

Figure 1. Surface diffraction of a radiated photon

(see review [17]). According to [15], this solution, which describes scattering
of a plane wave by the target under the surface diffraction geometry, can be
written in the form:

A(+)s ik 7 ik 7 7 ikoT
ES = e + Ay(k,w)e™ + By(k,w)e™, (18)
where the wave vector in a vacuum k = (l;t,lgl), lgl = (l;t,—l;l), EQ =

(Ezt, —l;u), |Eu| = \/k? — k3, Koy = ki + T, k, is the component of the wave
vector that is parallel to the surface, 7 is the reciprocal lattice vector, w is
the photon frequency. The amplitudes A; and By are given in [9.[14]. Substi-
tuting the solution E]%_)s = (E(E)s)* into (3), we can find the spectral-angular

distribution of SPXR and DRO.

2 Time dependence of the intensity of radiation produced by a
particle transmitted through a crystal

The intensity I(t) of radiation produced by a particle which has passed through
a crystal can be found with known intensity of the electric field E(7,t)) (mag-
netic field H(7,t)) of the electromagnetic wave, which is produced by this

particle [18],

I(t) = —|E(7, t))*r2ds, (19)

c
A7

where 1 is the distance from the crystal, which is assumed to be larger than
the crystal size.

The field E (7,t) can be presented as an expansion in a Fourier series

o 1 - )
Bt = 5 / B(F,w)e~™dw. (20)



According to the results obtained in [3[79], at a long distance from the crystal,
the Fourier component can be written as follows:

Sya [BT w)dr. (21)

S
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E(7,t)
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where i = 1,2, 3 (and correspond(s) to the coordinate axes x, y, z), €} is the i-

component of the wave polarization vector €*; s = 1, 2; E](;_)s is the solution of
Maxwell’s equations describing scattering of a plane wave with a wave vector
k = kT and the asymptotic of a converging spherical wave,

j (7, w) /] )e™tdt (22)

J(7,w) = QU(t)6(F — 7(t)) is the is the current density of the particle with
charge @), 7(t) is the particle coordinate at time ¢.

The explicit form of the expressions EC )$ describing diffraction of the elec-
tromagnetic wave in a crystal in the Laue and Bragg cases is given in [3/8/[12]
(See Section 1).

Now let us take a closer look at the expression for the amplitude A(w) of the
emitted wave:

Axw) =2 [ B (7 w) w)r (23)

Using (22)), (23) can be recast as follows

_w / EO (7, w)Qu(1)5 (7 — #(t)) e did?r’

_ WQ 2 [ B (), wyin)edr (24)

Recall that E_'lgf)s* = E"(_E.)S, where the field EEE)S is the solution of Maxwell’s
equations describing scattering by a crystal of a plane wave with wave vector
(—/;) and the asymptotics of a diverging wave at infinity. According to (24)),
the radiation amplitude is determined by the field Eﬁ]({)s taken at point 7(t) of
particle location at time ¢ and integrated over the time of particle motion.

Let us consider in more detail the constant motion of a particle in passing
through the crystal. In this case, parametric quasi-Cherenkov radiation can
appear [11[8], which includes, as a particular case, diffracted transition radia-
tion. The explicit formulas for the radiation amplitude in the case of two-wave



diffraction of photons in crystals for the Laue and Bragg geometries are given
in [3L812] (Section 1).

From (20)), ([2I)), and (23) follows that the expression for the electromagnetic
wave emitted by the particle passing through the crystal (natural or photonic)
can be presented in a form:

Bi(F WZ / A2 (w)e =) d, (25)

—

ie., By(71) = } S el Ax(t — ).

From (25) follows that the time dependence of the form of the pulse I(7, ¢)(E (7, t))
of radiation generated by a particle passing through the crystal is determined
by the dependence of the radiation amplitude A%(w) on frequency. Accord-
ing to the explicit expression for the radiation amplitudes given in [3]8,12],
the radiation amplitudes A%(w) can be presented as sums proportional to the
amplitudes of diffraction reflection from the crystal and to the amplitude of
wave transmission through the crystal. For example, for the case of forward
parametric radiation in the Laue geometry

.
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pn=1,2
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v _ _ _ ] [ei(w—(l_c'—l—n#sﬁ)ﬂ)% 1 (26)
w—kt  w—(k+kK,sN)U

Thus, the time dependence of the from of the radiation pulse is determined
by the time dependence of the radiation amplitude A2(t — £).

By way of example, let us consider the characteristics of the time dependence
of radiation produced by a particle passing through the crystal for a wave
packet passing through the crystal [2,[5/6]

Let us consider the pulse of electromagnetic radiation passing through the

medium with the index of refraction n(w). The group velocity of the wave
packet is as follows:

vy = <8wn(w)>1 _ ;{m(w)’ (27)

cOw

where ¢ is the speed of light, w is the quantum frequency.

10



In the X-ray range ( ~tens of keV) the index of refraction has the universal
WL
2w2 !

107% < 1. Substituting n(w) into (27)), one can obtain that vy, ~ ¢ < — =L,
It is clear that the group velocity is close to the speed of light. Therefore the

time delay of the wave packet in a medium is much shorter than the time
needed for passing the path equal to the target thickness in a vacuum.

form n(w) =1 - wy, is the Langmuir frequency. Additionally, n — 1 ~

2
ar=t o boten L (28)
Vgr c cw c

To consider the pulse diffraction in a crystal, one should solve Maxwell’s equa-
tions that describe a pulse passing through a crystal. Maxwell’s equations are
linear, therefore it is convenient to use the Fourier transform in time and to
rewrite these equations as functions of frequency:

2
—curl curl Bp(r,w) + — Ep(fiw) | + xi;(7w) B (7 w) =0, (29)

where x;;(7,w) is the spatially periodic tensor of susceptibility; ¢,j = 1,2, 3
repeated indices imply summation.

Making the Fourier transformation of these equations in coordinate variables,
one can derive a set of equations associating the incident and diffracted waves.
When two strong waves are excited under diffraction (the so-called two-beam
diffraction case), the following set of equations for determining the wave am-
plitudes can be obtained:

(30)

—

(ﬁ—l—Xo) L? _CsXFEI%ZO

w? kr

Here £ is the wave vector of the incident wave, b=k + 7, T is the reciprocal
lattice vector; xo, x7 are the Fourier components of the crystal susceptibility:

X(7) = Z X7 exp(iTT) (31)

Cy = é%¢s, €5(€F) are the unit polarization vectors of the incident and

diffracted waves, respectively.

The solvability condition for the linear system (B0) leads to a dispersion equa-
tion that determines the possible wave vectors k in a crystal. It is convenient

11



to present these wave vectors as:

= w
kus :k'i'ausN; Xus = —— Eus,
€Yo

where p =1, 2; N is the unit vector of a normal to the entrance surface of the
crystal, which is directed into the crystal,

e = i[(l + 8)x0 — fas] £ i {0+ B)xo — Baw — 200 + 45Ckxx ) (32)

ap = (2k7 + 72)k 2 is the off-Bragg parameter (ap = 0 when the Bragg
condition of diffraction is exactly fulfilled),

f)/:n-N’ Ny = -, 6:_7 ’)/:’I’LT'N, Nyr = =
T Tk no T TR+
The general solution of equations (29), (B80) inside a crystal is:
— 2 — —
Ex () =Y € Ay exp(ikys) + € Ay, exp(ikys )| (33)

p=1

Associating these solutions with the solutions of Maxwell’s equation for the
vacuum area one can find the explicit expression for E}(F) throughout the
space. It is possible to discriminate several types of diffraction geometries,
namely, the Laue and the Bragg schemes, which are most well-known [22].

In the case of two-wave dynamical diffraction, the crystal can be described by
two effective indices of refraction

S S

e = i fxa(t+8) - a1 = 8) + Ba)? +48C00x . (30

The diffraction is significant in the narrow range near the Bragg frequency,
therefore yo and y, can be considered as constants and the dependence on

%
T T2 K 2
27 (27;:2 +2K) _ _(2]:'3;2 (CL) i WB);
where k = %; 2177 is the reciprocal lattice vector which characterizes the set

of planes where the diffraction occurs; Bragg frequency is determined by the
condition v = 0.

w should be taken into account for o =

12



From (27), (34) one can obtain

(1,2)s __ C
T ) (w) & plzr2 (c0(_B)+ha) : (35)

4k}, vV (x0(1=B)+Ba)2 +4BCs xX—~

In the general case (xo(1 — 3) + Ba) =~ 2v/Bxo, therefore the term that is
added to n{"?(w) in the denominator (B35) is of the order of 1. Moreover,
vgr significantly differs from ¢ for the antisymmetric diffraction (|8 > 1). It
should be noted that because of the complicated character of the wave field
in a crystal, one of vé’)s can appear to be much higher than ¢ and negative.
When  is negative the radicand in (35) can become zero (Bragg reflection
threshold) and v, — 0 . It should be noted that in the presence of a variable
external field, a crystal can be described by the effective indices of refraction
which depend on the external field frequency €2 . Therefore in this case vy,
appears to be the function of 2 . This can be easily observed in the conditions
of X-ray-acoustic resonance. The performed analysis allows one to conclude
that the center of the X-ray pulse in a crystal can undergo a significant delay
AT > é available for experimental investigation. Thus, when = 103, 1 = 0.1
cm and [/c ~ 3-107!2, the delay time can be estimated as AT ~ 310 ?sec.

Let us study now the time dependence of the delay law of radiation after
passing through a crystal. Assuming that B(w) is the reflection or transmission
amplitude coefficients of a crystal, one can obtain the following expression for
the pulse form
1 :
BE(t) = — / B(w)Ey(w)e “tdw = / B(t — ') Ey(t')dt. (36)

21

where Ey(w) is the amplitude of the electromagnetic wave incident on a crys-
tal

In accordance with the general theory, for the Bragg geometry, the amplitude
of the diffraction-reflected wave for the crystal width much greater than the
absorbtion length can be written as [22]:

By(w) = (37)
{xolt+18) = 1810 =l = 18) = Bl = 418 Coox |

T

In the absence of resonance scattering, the parameters yo and xi, can be
considered as constants and frequency dependence is defined by the term

13



(277)2
k%c

a=— (w— wp). So, By(t) can be found from

1
AT x

x [ {xo(t+18) = 1810 = Ol = 18) = 181 0)? = 418 Coxrx + e e

By(t) =

(38)

The Fourier transform of the first term results in 0(¢) and we can neglect it
because the delay is described by the second term. The second term can be
calculated by the methods of the theory of function of complex argument:

(277)? Jy (ast)

i .
B,(t) = — —ilwstAwp)ty (¢ 39
or
1 Jy(agt .
Bs (t) _ 2|5| 1C(Lat )e—z(w}g+Aw}3)t9(t)7 (40)
where
_ 2/CixaX_+ws _ xo(1+|B))wskd
s = (27T)2 2WB = 2 2
6] 22 |B] (277)

k5

Since xo and x, are complex, both a, and Awp have real and imaginary
parts. According to (B9)-(0), in the case of Bragg reflection of a short pulse
(the pulse frequency bandwidth > frequency bandwidth of the total reflection
range) both the instantly reflected pulse and the pulse with amplitude under-
going damped beatings appear. Beatings period increases with || grows and
X- decrease. Pulse intensity can be written as

_ 18]
2

Jl (ast)

—2ImAwBt9t 41
e (t). (41)

L(t) ~ | By(t)[*

‘ 2

It is evident that the reflected pulse intensity depends on the orientation
of photon polarization vector €5 and undergoes the damping oscillations on
time.

Let us evaluate the effect. Characteristic values are ImAwp ~ Imyowp and
Ima ~ M98 For 10 keV for the crystal of Si Imyg = 1,610 , for LiH

VB

14



Imyg = 7,6- 10", Imy, = 7-10° %, for LiF Imy, ~ 10°%. Consequently,
the characteristic time 7 for the exponent decay in (4I]) can be estimated as
follows (wp = 10'9):

for Si the characteristic time 7 ~ 1072 sec, for LiF the characteristic time
7 ~ 1071 sec, for LiH the characteristic time 7 ~ 10~ sec!!

The reflected pulse also undergoes oscillations, the period of which increases
with growing || and decreasing Rey,. This period can be estimated for f =
10% and Rey, ~ 107% as T'~ 1072 sec (for Si, LiH, LiF).

When the resolving time of the detecting equipment is greater than the os-
cillation period, the expression (@I should be averaged over the period of
oscillations. Then, for the time intervals when Rea,t > 1, ImAwpt < 1 the
delay law (1)) has the power function form:

I(t) ~ t7°.

In the case of multi-wave diffraction, the time delay for the photon exit from
the crystal will be even more appreciable.

For an artificial spatially periodic medium (diffraction grating, photonic crys-
tal), the parameter go; can vary over a wide range. For example, according
to [23], for a photonic crystal built from tungsten threads of 100um in diame-
ter, the parameter go; ~ é has the value of go; ~ 1072 in a 10 GHz range. As

a result, in this range we have T' (10 GHz)~ VI V/B-107%. At the same

01|wW
time, in the terahertz range, T' (1 THz) due‘é‘]co'tﬁe drop of gg1 (T increases
proportionally to w, the parameter a decreases: a ~ é ), we have the period
T (1 THz) ~ /B -107°. As is seen, the oscillations of radiation from photonic
crystals are quite observable.

So the time 7, = UL that the photon spends in the crystal can be longer than
gr

the flight time 7, = % of a relativistic particle in a crystal. Hence, the emis-
sion of diffraction-related radiation (quasi-Cherenkov, transition, diffracted
radiation of an oscillator, surface parametric radiation and others) produced
by a relativistic particle will continue after the particle has left the crystal
(see Figl) Under diffraction conditions, the crystal acts as a high-quality
resonator [1124].

It should be noted, of course, that in observation of oscillations, one should
either register the moment of particle entrance into the crystal or use a short
bunch of particles with duration much shorter than the oscillation period.
In the X-ray range, such situation is typical of electron buches, which are
applied for creating X-ray FELs (DESY). (The bunch duration in such FELs is

15



tens-hundreds of femptoseconds). In the terahertz range, much longer bunches
are required, so there are not serious experimental problems in this case. If
the bunch duration is large in comparison with the duration of the radiation
pulse or the time of the electron entrance into the crystal is not registered,
which occurs in a conventional experimental arrangement, then the intensity
I(t) should be integrated over longer observation time intervals. As a result,
we, in fact, obtain the expression (I integrated over all frequencies, i.e., an
ordinary stationary angular distribution of radiation. If the response time of
the devices detecting 7p (or the flight time of the particle in a crystal, or the
bunch duration) is comparable with the oscillation period, then I(t) should
be integrated over the interval 7. In this case oscillations will disappear, but
we will observe the power-law decrease in the intensity of radiation from the
crystal.

In according with the above analysis some experiments are carried to observe
delay of radiation pulse in a photonic crystal used for VFEL lasing [25H28].
In these experiments the additional radiation peak (see Figll) is observed at
studies of lasing of VFEL with ”grid” photonic crystals in backward wave
oscillator regime. This peak appears when the electron beam has left the
resonator.

Normalized signal

voltage
beam current
——— microwave power

-100 ' (; ' 1 (I)O ' 2(‘)0 ' 30‘0 ' 4(‘)0 ' 5(‘)0

Time, nanoseconds
Figure 2. Detected microwave signal (black curve) synchronized with the beam
current and electron gun voltage

It should be mentioned here that backward wave oscillator regime implies
generation in presence of Bragg diffraction, therefore, under some conditions
the group velocity could appear even to be close to 0 (see equation (BH])). The
observed delay (Figl2)) corresponds to vy, ~ 10% cm/s, i.e. & ~ 1072,

In travelling wave regime, which corresponds to case of Laue diffraction, such
long delay can not be obtained (according to (B3]) for 5 > 0 the group velocity
vy changes insignificantly). Particularly, in our experiments with Cherenkov
generator without diffraction grating no additional peaks are detected, because
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the group velocity in this case changes insignificantly due to the same reasons
as in the Laue case.

And after all note that diffraction of a pulse of radiation produced by an
external radiation source in a periodic structure could be accompanied by
appearance of several transmitted or reflected radiation pulses (pulses of pho-
tons) (see [29]).

Conclusion

The formulas which describe the time evolution of radiation produced by a rel-
ativistic particle moving in a crystal are derived. It is shown that the conditions
are realizable under which parametric (quasi-Cherenkov) radiation, transition
radiation, diffracted radiation of the oscillator, surface quasi-Cherenkov and
Smith-Purcell radiation last considerably longer than the time 7, of the particle
flight through the crystal. The results of carried out experiments demonstrate
the presence of additional radiation peak appearing after the electron beam
has left the photonic crystal.
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