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Abstract: Two-antenna aperture synthesis scanning 

doubles azimuth resolution of imaging systems. Our 

previously reported image reconstruction approach 

assumes that transmitting and receiving antennas are 

situated closely to each other, but in real conditions this 

can be violated due to antennas physical dimensions and 

necessity of coupling reducing. Using common 

approaches can cause reconstructed image distortions. 

This paper presents approach that takes into account 

antennas separation. Effectiveness of the approach is 

experimentally proven. 

Keywords: Microwave imaging, Two-antenna Aperture 

Synthesis 

INTRODUCTION 

Microwave imaging is a set of methods for obtaining 

hidden object images with microwave field. The region of 

interest with object in it is illuminated with microwaves, 

then reflected field is measured and processed to obtain 

object image. Microwave imaging has a lot of 

applications: ground penetrating radars (GPRs) for 

landmine and underground utility detection and 

geological surveys, nondestructive testing, medicine etc. 

Two-antenna scan aperture synthesis is well-known 

technique used to improve system spatial resolution [1]. 

Recently we presented an approach for two-antenna scan 

for microwave imaging [2]. The approach uses an 

assumption that receiving and transmitting antennas are 

separated in the same point. But limited antennas physical 

dimensions and necessity of coupling reducing  does not 

allow placing antennas too close. Using the approach that 

does not take into account antennas separation can cause 

distortions in reconstructed image. 

This paper presents an approach to microwave image 

reconstruction with two-antenna scan aperture synthesis 

that deals with antennas separation. An approach solves 

linearized (with Born approximation) inverse problem in 

frequency domain. Closed form frequency response was 

obtained under certain approximations, but numerical 

simulations and experiments have showed that using 

numerically calculated frequency response results in 

better reconstructed image quality. 

PHYSICAL MODEL 

The physical model diagram for two-antenna scan 

aperture synthesis is presented in figure 1. The object is 

assumed to be plain for simplicity; however, three-

dimensional prominent objects can be divided into such 

plane “slices”. 

 

 

Fig.1 –  Two-antenna scan aperture synthesis diagram 

Note that in this scanning scheme, incident field on 

object surface is constantly changing with antennas 

movement, so the data gathered isn’t static field 

distribution in aperture plane. 

Antenna coordinates are linked with the following 

equation: 
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where x0 and y0 are transmitting antenna coordinates, xa 

and ya are receiving antenna coordinates, and xc and yc are 

antenna system center coordinates. 

According to Kirchoff assumption, complex amplitude 

of field reflected from the object in point (x, y) directly on 

object surface can be expressed as 
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where  , ,0p x y  is reflected field amplitude,  0 , ,0p x y  is 

incident field amplitude at the same point,  ,K x y  is 

object reflection coefficient at the same point. Expression 

 , ,Tp x y z  generalizes incident field and describes 

amplitude of transmitting antenna field when no scatterers 

are present and transmitting antenna is situated at zero 

point. 

According to Born approximation [3], which is 

applicable to strongly scattering plane objects in this case 

[2], the field that is reflected to the aperture plane can be 

expressed as follows: 
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where  0 , ,p x y z  is scattered field from single scatterer 

(object point). 

Substituting object surface field from expression (2) to 

expression (3) we obtain 
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where  ,Z c ch x x y y   is system impulse response, 

 

 

    

    

,

, ,

, , .

Z c c

T c c

O c c

h x x y y

p x x x y y y z

p x x x y y y z

  

       

        

 

Considering both transmitting antenna and object point 

small enough, the field can be treated as spherical wave 

field. Thus 
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where    
2 2 2
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   
2 2 2
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Combining expressions (5) and (4) we finally get 
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The equation (6) is the key to image reconstruction. It’s 

Fredholm integral equation of the first kind with 

difference kernel, and it can be solved in frequency 

domain [4]. The solution is as follows (it omits 

regularization issues for simplicity): 
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where  ,x yF  denotes two-dimensional direct Fourier 

transform with respect to coordinates x and y, and 

 , 

-1
F denotes two-dimensional inverse Fourier 

transform with respect to coordinates  and . 

To obtain the solution, we need to calculate the Fourier 

transform of equation kernel, which is system frequency 

response: 
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where 
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However, it’s not possible to obtain close form of 

transform (8) in general case. 

NUMERICAL FREQUENCY RESPONSE 

CALCULATION 

Discrete Fourier transform algorithms can be used to 

calculate frequency response. In this case, choosing 

appropriate limits and sampling interval for kernel 

discrete values calculation should be considered.  

Both range and sampling step determine frequency 

values corresponding to frequency samples after DFT 

calculation. These values should correspond to frequency 

samples of measured data DFT, in order to perform 

element-by-element division according to equation (7).  

But, frequencies of discrete field spectrum are 

determined by aperture size and sampling step. Thus, 

kernel should be sampled exactly in the same points as 

aperture does. 

On the other hand, limiting kernel sampling range will 

result in frequency response distortion, since DFT results 

in convolution of “true” kernel spectrum and spectrum of 

rectangular window equal to sampling range. Practically 

to avoid these distortions, kernel sampling range should 

be much more that aperture size. 

To resolve this contradiction, kernel sampling range is 

chosen to be multiple of aperture size, and sampling step 

coincides with aperture's one. In this case, each n-th (n is 

multiply order) sample of frequency response coincides to 

measured data spectrum sample. This is schematically 

shown for n = 2 in fig. 2.  
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Fig 2. Kernel sampling scheme 



Upper image shows kernel samples (crosses) and 

measured data samples (circles) in spatial domain, while 

lower shows the same in frequency domain. Notation is: 

a – aperture size, x – spatial sampling step, 2 x    –

 frequency domain range, 2 a   – frequency domain 

sampling step. 

CLOSED FORM SOLUTION 

Obtaining closed-form solution under certain 

approximations is of interest e.g. for analyze purposes. 

Considering x z , y z  equations for R  and R  can 

be approximated with Taylor series trimmed on quadratic 

terms: 
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Assuming  
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we can write that 
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In that case, system impulse response can be written as 
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Because of initial assumptions, both multipliers in 

denominator of expression (13) can be replaced either 

with R or with z (because R ≈ z), and we finally obtain 

that 
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If we add z   condition to above, we can calculate 

Fourier transform on expression (14) [5], and it can be 

written as (without scale multipliers): 
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It’s interesting to note that expression (14) describes 

impulse response (Fredholm equation kernel) of an 

imaging system that differs from one being considered in 

three points: 

1. It performs one-antenna scan rather than two-

antenna scan 

2. The illuminating wave frequency is doubled 

3. The distance between object and aperture plane is 
2 2

22

x y
z

z
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  rather than z. 

Comparing this to previously reported approach [2], we 

can state that antennas separation result in focusing plane 

displacement. 

It’s worth estimating the roughness of conditions 

assumed: x z , y z  and z  , since they’re not 

always accomplished. The estimating is hardly possible in 

general case, but it becomes possible when antennas are 

situated closely enough. The kernel in equation (6) is 

written as follows in this case (note that assumptions 

mentioned above are omitted): 
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Let’s multiply this kernel to the following value. It can 

be shown that this value is almost constant even when 

assumptions mentioned above are omitted. 
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After some transformations we obtain 
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Closed-form Fourier transform can be calculated for 

the expression (18): 
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On the other hand, closed-form frequency response 

(15) will be written as follows in this case: 

    2 2 2, exp 4H iz k      . (20)  

Comparing expressions (19) and (20), we come to the 

fact that closed form of frequency response can be used 

even when conditions introduced are violated, considering 

transmitting and receiving antennas are close enough. 

NUMERICAL SIMULATIONS 

Numerical simulations were performed to test 

algorithm proposed. Also, numerical simulations showed 

whether closed form frequency response is effective when 

antennas are spatially separated and conditions introduced 

are violated. Simulations consisted in scattered field 

calculation and image reconstruction with algorithm 

proposed followed.  

Simulation conditions were chosen to match 

experimental setup [6] parameters so that numerical 

simulation and experimental data are comparable. Square 

system aperture had 32-by-32 points situated at 

rectangular grid nodes with 1 cm sampling step.  



A point object was situated below the center of the 

aperture. The distance between object and the aperture 

was 15cm. Antennas separation was altered from y = 0 

to y = 10cm, x was always zero. 10GHz illumination 

frequency was chosen. 

Figure 3 shows object image reconstructed without 

taking care of antennas separation, and it reflects 

distortions caused by separation. Upper figure (3a) shows 

object image for y = 10cm, while lower figure (3b) 

shows image slice along Y axis for different y values. 

Displacement values are shown in legend (in centimeters). 

Slice position is marked in object image with vertical 

dashed line. 

-0.15 -0.1 -0.05 0 0.05 0.1 0.15
-0.15

-0.1

-0.05

0

0.05

0.1

0.15

No correction

а)

x

y

 

x

b) b)

y
-0.1 0 0.1

0

0.2

0.4

0.6

0.8

1

X-slice

-0.1 0 0.1
0

0.2

0.4

0.6

0.8

1

Y-slice

0

2

4

6

8

10

 

Fig. 3. Point object image reconstructed without taking 

into account antenna separation 

Figure 3 shows that image distortions became 

significant for y = 6cm, that is, when antennas 

displacement (2y) approaches distance to the object. 

Additional simulation was performed to this assumption. 

In this simulation the distance to the object was reduced 

to 6cm. Figure 4 shows vertical slices of images 

reconstructed for different y values. 
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Fig. 4. Vertical slice of point object image reconstructed 

when distance to object is 6 cm. 

It’s seen that image distortions became significant 

when antennas displacement become 8cm (y = 4cm). 

This proves assumption proposed. 

Figure 5 shows images reconstructed using approach 

proposed for maximum antennas displacement 

(y = 10cm). Upper image (5a) is obtained with 

numerical frequency response while lower one (5b) is 

with closed form response. 
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Fig. 5. Point object image reconstructed with approach 

proposed 



It's seen that image distortions caused by antennas 

separation are almost totally disappear when numerical 

frequency response is used. With closed form frequency 

response, the distortions retain noticeable though they’re 

reduced significantly. 

Additional simulations were performed to test the 

approach in multi-frequency case [2, 6]. Eleven 

illumination frequencies from 6.0 GHz to 10.0 GHz were 

used. Image reconstruction results for multi-frequency 

case are shown in figure 6. Antenna displacement was 

y = 10cm. 

Upper image (6a) shows image reconstructed with 

approach not dealing with antennas separation, and lower 

one (6b) shows image reconstructed with algorithm 

proposed. It’s seen that significant distortions caused by 

antennas separation are almost completely eliminated 

with approach proposed. 
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Fig. 6 Point object image reconstructed in multi-

frequency case 

EXPERIMENTAL RESULTS 

An experimental setup described in [6] was used to test 

approach proposed against experimental data. System 

aperture has size of 32x32 points situated at 1x1 cm grid 

nodes; images reconstructed have the same size and 

resolution. The point object (small metallic disc) was put 

at 14 cm from the aperture plane. Eleven illuminating 

frequencies in 6 GHz to 10 GHz range were used. 

Antennas were separated along vertical axis by 20 cm 

(y = 20 cm). 

Figure 7 shows images reconstructed with three 

approaches – without taking care of antennas 

displacement, with closed form frequency response and 

with numerical frequency response (upper, middle and 

lower images). It’s clearly seen that ignoring antennas 

offset leads to inappropriate reconstruction. Using 

numerical frequency response shows superior image 

quality over closed-form frequency response, which is 

expectable since closed-form approach uses assumptions 

that are not true for this case. Still, image reconstructed 

with closed-form frequency response is acceptable. 
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Fig. 7  Point object image reconstructed on experimental 

data 



The approach was also tested on objects more 

complicated that point object. Image reconstruction 

results of “A” letter model are presented in figure 8. It’s 

seen the approach is still effective under these conditions, 

and numerically calculated frequency response showed 

better performance again. 
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CONCLUSION 

An image reconstruction approach dealing with 

antennas separation for two-antenna scan aperture 

synthesis was presented. An approach is based on Born 

approximation and solves linearized inverse problem in 

frequency domain. Closed-form frequency response was 

obtained under certain approximations. Experimental 

results showed effectiveness of the approach; however, 

numerically calculated frequency response offered better 

image quality compared to closed-form frequency 

response. 
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