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Abstract: In the paper we suggest an approach for 
preprocessing histological images of brain slices. These 
images are usually received in noisy environment and 
thus require sophisticated preprocessing. We present two 
algorithms for brain contour detection and use their 
results for further nucleus detection that is important for 
biologists. We test our methods on real mouse brain data 
and show their applicability. 
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1. INTRODUCTION  
Analysis of physiological activity is one of the most 

interesting tasks of microbiological investigation. There 
are many kinds of such investigation. One example is the 
investigation of cells activity by image analysis. Such 
images are represented with immunohistochemical 
markers. Intensity of these markers corresponds to 
physiological activity of cells nuclear after whatever 
physical effects. 

Such images may be colored or registered in gray 
levels. Colored images describe activity of oncology or 
virus diseases by special chemical preparation which 
works with separate protein only. Gray images (fig. 1) 
describe activity by ribonucleic acid concentration. Last 
case is more convenient for investigation of physiological 
activity.  

 
Fig.1 –Gray physiological image of rat’s brain

 
Brain is the most physiologically complex and mysterious 
organ. Investigations of gene-expression patterns in 
mammalian brains are one of the most intensive studies in 
modern neuroscience [2]. In these investigations the key 
problem is discovering of specific genes that are uniquely 
expressed in different brain circuits and regions that 
control behavior. This task is often solved by comparing 

current brain with some brain atlas – a set of high quality 
brain slices with marked brain anatomic structures [3]. 
Allen brain atlas [4,5] is one example of this. Finding 
correspondence between observed brain and atlas brain 
allows one to determine physiological activity areas and 
their correspondence with brain anatomic structures. 

It is very difficult to solve these tasks because they 
include many steps of analysis and processing. However, 
the first step is brain area extraction and cell nucleus 
determination. So the main effort of this paper is reliable 
procedures for image brain segmentation and cell nucleus 
extractions. In the paper we present automatic methods 
for pre-processing of noisy brain images. The presence of 
noise is inevitable and is related to image acquisition 
procedure.  

The rest of the paper is organized as follows. In 
chapter 2 we consider the peculiarities of brain images. 
Sections 3 and 4 present two methods for brain area 
detection from brain slice images in noisy environment. 
In section 5 we describe an algorithm for nucleus 
detection which is important for further processing. 

2. PHYSIOLOGYCAL BRAIN SLICE IMAGE 
Initial data for investigations is a set of brain slice 

images obtained from adult C57BL6 mouse brain. For 
each mouse brain about 100 slices were taken. We had 
data for 6 mice thus having total 600 images for analysis. 

The structure of obtained images is: background, brain 
area, nucleus regions and artifacts. The histogram analysis 
allows to separate background, brain and nucleus (fig. 2). 
But still artifacts exist for all range of intensity that give a 
negative influence. 

Fig.2 – Thresholding of physiological brain image histogram  
While artifacts prevent us to extract real contour of 

brain, false nuclear-like objects can be observed as well. 
In such case the result of threshold segmentation has poor 



quality and false objects. The specialized segmentation 
algorithms have been developed to avoid the problems. 
They consist of two parts: brain extraction and nucleus 
detection. 

3. BRAIN AREA DETECTION  
The image histogram analysis shows that histogram 

distribution has common shape for all brain images. The 
background area is characterized by the first peak. This 
property leads to methods of background detection. We 
use here watershed algorithm on inverse histogram 
(fig. 3). 

 
Fig.3 – Simple thresholding of physiological mouse brain by 

inverse watershed method 
 

After this operation the resulting image has poor 
quality in sense of extracted objects but it includes 
important information about brain’s border. 

The brain on the image is represented by several 
areas; each of them has individual characteristics and 
defined by its own method. 

The first step is histogram image thresholding. This 
operation creates a binary image for control operation.  

Brain images have two main object characteristics for 
extraction: border and density of nucleus. Therefore a 
combination of methods is used here to define a border 
area: detection of brain’s contour and detection by 
nucleus properties. 

3.1. BRAIN CONTOUR DETECTION 
Brain’s contour is constructed from borders 

properties. Border should be relatively smoothed but 
artifacts are usually disrupt it. In order to solve this 
problem a special algorithm of border detection has been 
developed. 

All small objects around brain are removed by 
skipping operation to provide further easy processing. 
The morphological closing operation with very small 
structure element removes small noise of binarisation. 
Then the radius distribution of object is collected. The 
radiuses correspond to lines from the center of mass to the 
border. This distribution includes many radiuses for every 
separate angle. For every angle all radiuses are removed 
except radius of minimal value. Then fitting line is 
constructed by spline smoothing (fig. 4). 

 
Fig.4 – The distribution of radial radius from centre of mass to 

border (r) and fitting this data by spline smoothing (fit 1) 
 

 

 
Fig.5 – The Binary image of brain after border smoothing and 

distribution of minimal radius 
 

This is a piecewise polynomial that varies from linear 
to cubic. Level of smoothing is adjusted with smoothing 
parameter. The default parameter value depends on the 
data and often produces the smoothest fit. The predictor 
data is centered at zero mean and scaled to unit standard 
deviation. 

This smoothing removes border noise from artifacts 
but, however, partially changes the true border (fig. 5). 

For further correction current border result (fig. 5) is 
united with border threshold segmentation (fig. 3) by 
logical conjunction (fig. 6). 



 
Fig.6 – The result of consolidation threshold segmentation and

border smoothing operation 
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Fig.7 – The algorithm of detection of smooth brain contour

 
Summarizing all mentioned above steps the algorithm of 
brain contour detection can be represented by scheme 
(fig. 7). 
Although we got here smooth brain contour without 
artifacts sometimes the constructed brain pattern is less 
than real object and few nucleus can be found outside of 
this pattern. In order to compensate such effects an 
additional correction procedure by nucleus properties is 
necessary here. 

3.2. BRAIN DETECTION BY NUCLEUS 
PROPERTIES 

The following algorithm is based on conglomerate 
cells features. Nucleus and sharp border on gray brain 
image have hat-like intensity profile. It gives us an idea 
that the best extraction method would be a morphological 
“top-hat” operation (fig.8).  

 

Fig.8 – The result of top-hat operation  
Then thresholding of brightness derivate histogram 

has been performed to obtain a binary pattern (fig. 9). 

 
Fig.9 – The resulting image after thresholding of derivate 

histogram 
 

The pattern includes impulse noise artifacts, nucleus 
and fragments of brain border. The major portion of 
nucleus stands near other nucleus. Therefore it is possible 
to connect nucleus and fragments of brain’s border by one 
iteration of morphological closing with 25-pixels round 
structure element. Then filling operation followed by 
“skipping” removes connected holes from image and 
small binary objects, respectively (fig. 10).  

Morphological smoothing (open-close operation) cuts 
“hairiness” of border that exists by artifacts. The resulting 
binary pattern consists of regions with high geometrical 
density of nucleuses. Combining this result together with 
the result of brain contour detection (fig. 5) by disjunction 
allows taking the full brain area (fig 11). 

After all we obtain the final result of brain 
segmentation (fig. 12) using a logical image conjunction 
of threshold segmentation pattern (fig. 3) and the result 
we had on the previous step (fig. 11). 

 



 

Fig.10 –Morphological processing after skipping of small 
objects 

 

 
Fig.11 – Aggregate consisted of contour detection and detection 

by nucleus properties 
 

 Fig.12 – The result of brain segmentation
 

4. GRAPHCUT SEGMENTATION METHOD 
In order to make segmentation more robust we have 

developed another segmentation method based on graph 
cut algorithm [1]. 
 
4.1. GENERAL GRAPH CUT ALGORITHM 

 
Suppose we are given a graph { }, ,G V E W= , 

where V is a set of nodes, E is a set of edges, W is affinity 

matrix, which associates a weight for each edge in E. A 
cut of a graph is a partition of V into two disjoint subsets 
(A and B). The min-cut of a graph is such a cut that the 
sum of weights associated with edges between different 
segments is minimal: 

min ,
,

( , ) u v
u A v B

C A B W
∈ ∈

= ∑ . (1) 

However, min-cut determination problem is NP-hard. 
Adding the requirement that two predefined nodes, 
denoted terminal nodes or source and sink nodes, in G 
must be in separate sets, significantly reduces the problem 
complexity. Finding the min-cut separating the source and 
the sink nodes, the s-t cut, can be done in polynomial 
time. If we associate the weight of each edge with flow 
capacity it can be shown that the maximal amount of flow 
from the source to the sink is equal to capacity of a 
minimal cut. That’s why the min-cut problem is also 
known as the max-flow problem. 

Suppose we are given an image of mouse brain slice. 
We build an undirected graph G from this image in the 
following way. Set of nodes V includes all pixels of the 
image and two additional nodes: source (s) and sink (t). 
Each pixel node is connected with its neighbors (we used 
8-connectivity in our approach). Source and sink are 
connected with all pixel nodes and are not connected with 
each other. Fig. 13 illustrates construction of graph G. 

 
Fig.13 – Constructing a graph from an image

 
We associate source with object and sink with 

background. So pixel nodes, which are in source group 
after graph cut, are pixels of object (set A) and pixels 
from sink group are pixels of background (set B). 

Graph cut algorithm applied to such a graph 
minimizes the following energy: 

, , ,
,

u v u t v s
u A v B u A v B

E W W W
∈ ∈ ∈ ∈

= + +∑ ∑ ∑ . (2) 

Edges between non-terminal nodes correspond to how 
alike two pixels are. We use the following measure: 

2
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where dist( , )u v  − distance between two pixels, ,u vI I  
− intensities of pixels, σ  − algorithm parameter. 

In our approach we use some prior information about 



the image. Mouse brain slice must be placed in the center 
of the image. We call a group of pixels in the center of the 
image as object seed pixels. Also pixels at image border 
must be referred to background. We call border pixels as 
background seed pixels. Graph cut algorithm must refer 
object seeds to object and background seeds to 
background. We achieve that by making 

, ,, 0u s u tW W= ∞ =  for object seeds and 

, ,0,u s u tW W= = ∞  for background seeds. 
We restore object and background gray color models 

from seed pixels, supposing that both object colors and 
background are normally distributed. According to this 
assumption we set last weights on image graph as 
follows: 

,
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Here ( | , )N x μ Σ  − probability density function of 
normal distribution, λ  is method parameter responsible 
for importance of color information in segmentation. 
We use Kolmogorov-Boykov algorithm [1] as a graph cut 
algorithm. 

4.2. APPLYING GRAPH CUT METHOD TO 
MOUSE BRAIN SLICE 

Consider we are given a mouse brain image (Fig. 1). 
At first, we apply a standard median filter with small 
radius to make the image smoother. After that we apply 
graph cut segmentation method described above with 
parameters 0.001, 0.03λ σ= = . Such parameter values 
were found experimentally and showed good performance 
for all similar brain images. 

After applying graph cut we may have several  
unconnected fragments. We choose the largest component 
as a mouse brain. The result of this method is shown on 
Fig. 14.  

 
Fig.14 – Graph cut algorithm result for mouse brain.

 

 

5. NUCLEUS DETECTION 
Using the results of brain segmentation we may limit 

the region for nucleus search. Common brightness 
distribution for nucleuses corresponds to Gaussian-like 

shape and most artifacts have brightness on wing of the 
histogram (fig.15).  

 
Fig.15 – The histogram of brightness inside region of brain and 

Gauss-like curve 
 

Therefore artifacts have been detected by thresholding 
of brightness histogram wing and then removing of small 
objects (fig. 16) since small objects correspond to 
nucleuses here.  

 

Fig.16 – Binary patterns of artifacts 
 

Before nucleus detection gray image is averaged by 
low-pass filter to remove small impulse noise and smooth 
brightness surface of image. In topological sense 
nucleuses are represented as hills. So one of the best 
operations to detect them is watershed of inverted image. 
The watershed was done for 10-20 levels of brightness. 
Then resulting image was subtracted from averaging 
image and binarized by simple thresholding with further 
removing of artifacts regions. Finally binary image of 
nucleus is obtained (Fig. 17). 

Every nucleus has individual intensity of brightness. It 
can describe physiological activity of nuclear. 
Conjunction of binary and gray image allows to take 
distribution of brightness for nucleus only. It corresponds 
to the distribution of physiological activity (Fig. 18). 

 



 

Fig.17 – Binary image of nucleuses 
 

Fig.18 – Distribution activity of nucleus that is calculated from 
physiological image 

 
 

6. CONCLUSION 
The analysis of physiological activity of brain can be 

carried out by image analysis procedures. In this paper we 
proposed algorithms for brain contour detection and 
nucleus extraction. These algorithms were tested on real 
histological images of mouse brain slices. The results 
allowed us to conclude that the proposed approach can be 
effectively applied even to noisy images. 
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