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Abstract: We propose an optimization approach to speed
up the point matching process underlying the 3D
reconstruction of complex urban scenes. We consider the
Optical Flow technique for point matching and propose to
introduce MMX and SSE2 instructions to accelerate
significantly the matching process. Fast point matching
allows using sub-pixel image resolution, which provides a
more accurate estimation of the Optical Flow by
exploiting wider correlation windows, and therefore
improves the final quality of urban scenes 3D
reconstructions.
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1. INTRODUCTION
With the new generation of high resolution optical

images, the problem of 3D urban areas reconstruction
from  stereo  pair  of  images  appears  to  be  challenging.  It
finds successful applications in many areas of human
activity such as geography, architecture or information
technologies.

Numerous approaches have been proposed to solve it
[1, 2, 3, 4, 5]. Among them, the most popular consists in
first computing a Digital Elevation Model (DEM) [3].
Computing this 3D model is equivalent to estimate the
disparity map of corresponding pixels in the calibrated
images [3, 6, 7]. Therefore, the main problem reduces to a
matching problem between the two images.

The accuracy of the DEM depends on many factors;
among them the image resolution is crucial. High
resolution leads to images with a huge size inducing
heavy computations for constructing the DEM. Several
hours or even several days are sometimes required to
obtain the solution. Thus, to speed-up the process appears
to be a major issue.

 In this context, different techniques have been
proposed to optimize the computation time required for
reconstructing a DEM [8]. We present a new approach to
this problem that significantly speeds up the DEM
computation. To compute a dense disparity map we
exploit the Optical Flow information [7]. We select the
region-based matching method, proposed in [9, 10], to
compute the optical flow on the stereo pair. This choice
allows an implementation which extensively uses
Multimedia Extensions (MMX) and Streaming SIMD
Extensions (SSE) that reduce the execution time by
several orders of magnitude. The bulk of arithmetical
operations, which actually are needed to compute the
pixels matching in the stereo pair, are performed with the
help of MMX or SSE2 instructions.

Optimizing the DEM reconstruction reduces the
computations time but also improves the accuracy of the
result as it allows using larger window for estimating the
correlation between pairs of pixels.

Herein, we do not consider processing partly visible
pixels and moving objects, although it can be done using
the optical flow information. This aspect will be
considered in future works.

The proposed approaches are tested numerically on a
stereo pair of aerial images. The results show a real
impact of the proposed techniques on both the accuracy of
the reconstructed scenes and the reduction of execution
time needed for their computation.

2. OPTICAL FLOW FOR URBAN DEM
Determining a dense disparity map, leading to a

Digital Elevation Model, is a very computationally
expensive task. Our goal is to develop a technique that
drastically accelerates the process in order to reconstruct
complex urban scenes. The optical flow approach is
selected as the simplest technique allowing a huge
optimization of the algorithm. Several optical flow
methods have been proposed in the literature. They are
based on differential equations [9, 11], region-based
matching, energy minimization or phase estimation [9].
The region-based matching appears to be the simplest and
less computationally demanding [10].

Before giving a detailed description of the
optimization technique for the region-based matching, let
us  note  a  specificity  of  an  urban  DEM.  Usually,  stereo
pairs of urban areas are obtained from a rather high
altitude. Therefore, depth of urban scenes is much less
than the distance from the earth surface to the optical
center of the camera. In this case, the perspective effects
can be neglected and we can consider an affine transform
of the scene [12]. We can even often consider only
translations, or in worst cases a composition of a
translation and an affine scaling along coordinate axes.
This specificity allows a preliminary alignment of the
stereo pair, either by the appropriate shift, or by the
combination of a shift and an affine scaling. For instance,
the stereo images of the urban scene shown in Fig.1 and 2
can be aligned by simple shifts. After such an alignment,
the maximum disparity between corresponding pixels in
the 1st and the 2nd images is equal to 6 pixels. Therefore,
we make the following assumption:

Assumption: Images of a urban scene stereo pair can
be aligned either by a shift or the combination of a shift
and an affine scaling.

 Since, after the preliminary alignment, the maximum



Fig.1 – Left image of an urban scene calibrated stereo pair
© French Geographic Institute (IGN).

Fig.2 – Right image of an urban scene calibrated stereo pair
© French Geographic Institute (IGN).

of the disparity map is not large, we can avoid
considering the epipolar geometry. Using epipolar lines
does not increase the accuracy but can slow down
seriously the computations.

The best matching between points is usually obtained
by maximizing the correlation or minimizing the norm 2L
or 1L  between rectangular or square windows [13].  We
consider, in this study, square windows and the norm 1L ,
more adapted to urban areas at high resolution, which
contain high contrasts between objects, and allowing the
most significant acceleration of calculations.

Let us summarize the specificity of the proposed
approach for computing an urban DEM. The preliminary
aligned stereo pair is used whereas the epipolar geometry
is not. The matching procedure is carried out by
minimizing the sums of brightness absolute differences
over square windows.

In such a form, the best matching optical flow
algorithm turns out to be programmable via MMX or
SSE2 instructions.

Since standard digital gray scale images are represented
as byte arrays, arithmetical operation, including
computation of the proposed version of the optical flow,
can be performed using MMX or SSE2 instructions. In
this case the execution time of the algorithm is reduced by
several orders of magnitude.

In order to explain the technique in details let us
introduce some notations.

Denote by { } { }1,...,01,...,0 21 -´-= nnS  the common set
of pixels Spp Î= ),( 21p  of both images )1(I  and )2(I
composing the stereo pair (as we have assumed that
images are preliminary aligned, )1(I  and )2(I  are  the
aligned common parts of the original stereo pair). The
pixel brightness is denoted by { }255,...,0)( ÎiIp , 2,1=i .
The window )(plW  of half-size l  centered in pixel

),( 21 pp=p is the set of pixels

{ { } }ll £--== 221121 ,max),()( qpqpqqW qp .

The disparity between two pixels 1p and 2p  is  the
difference 12 ppd -= . The windowed matching function
is given by
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Its values generate the matrix )(dF . Traditionally, )(dpF
is called the Sum of Absolute Difference (SAD).

Let, for some fixed integer number m , which is half-
size of admissible shifts, the value of the optical
flow )(ˆ pd  for pixel p be
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where the minimization is performed on the set of pixels
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Then, the dense disparity map can be presented as the
matrix { } S~)(ˆ

Î= ppdD .
To directly compute D , the number of absolute values

of differences in (1), which in the sequel are called
operations, is equal to

( ) ( ) 21
22 ~~1212 nnmN ++= lD ,

where ( ) 2,1,2~ =+-= imnn ii l .
Several approaches have been proposed to decrease

DN  for estimating the dense disparity map D .  Most  of
them consist in finding approximate solutions, but a few
address  exact  computations  [14].  One  of  them  is  the
cutoff method [14, 15]. Briefly, it can be formulated in
the following form. During computation of the disparity
in some pixel p  at iteration ( )( )212, +£ ltt  we store the
minimum value )( (min)tdpF  of )( tdpF  over all already
tested displacement t<tt ,d . The computation of the
current sum (1) is stopped if its value exceeds )( (min)tdpF .



If  the  current  sum )( tF dp  is  lower  than  the  previously
computed minimum value, it is fixed as the current
minimum. Such a simple technique for computing large
SADs )(dpF  greatly accelerates the estimation of a dense
disparity map, especially for large search windows. The
method we use as a reference for comparison consists in
estimating the dense disparity map by a direct
computation of the SAD, using the cutoff technique. It is
referred to as Strategy 1.

We compare this basic approach to different
strategies. Strategy 2 consists  in  computing  the  sum  of
absolute values )(dpF  by SSE2 instructions, but without
cutoffs [15]. Strategy 3 considers SSE2 instructions for
the SAD and the cutoff  technique to estimate )(dF .

We also consider a more sophisticated strategy, which
consists  in  keeping  in  memory  the  values  of

SII ~,)2()1( Î- + qdqq  for each fixed shift vector

( )21,dd=d  when computing the entire SAD matrix )(dF .
This allows decreasing the number of operation by a
factor of ( )212 +l . For example, for windows )(plW of
half size 10=l  and 25=l , the number of operations
decreases by 441 and 2601 times respectively. The
number of operations is even more decreased by using the
running sum method [16] for determining )(dF .

The running sum technique was introduced to avoid
repeating summation of the same SII ~,)2()1( Î- + qdqq

for different )(dpF [8]. Consider two neighbors SAD
)(),( 21

dppF  and )(),1( 21
dppF + . The window ),1( 21 ppW +l

differs from ),( 21 ppWl   in two columns. Therefore, to

get )(),1( 21
dppF +  we can subtract from )(),( 21

dppF
summands its left column, and add summands of the right
column of )(),1( 21

dppF + .  Actually, it requires only

( )122 +l  operations instead of ( ) 112 2 -+l  for direct
summation.  If we, first,  use the running sum method to
summarize elements of the left and the right columns we
have approximately 4 operations for each window.

That  is  our Strategy 4 relying on storing all
SII ~,)2()1( Î- + qdqq for the current d and using the

running sum method. It is implemented without MMX or
SSE commands.

For any of these optimization strategies the number of
operations is huge. However, the optical flow
computation can be even more accelerated by using
techniques which allow the SAD computation without
conditional operators. This is the case when using MMX
and SSE2 instructions in the concurrent mode [15]. For
example, the computations of absolute values of
differences for two images of size 640x480 takes only
0.086 milliseconds (ms) when using SSE2 on Intel Core 2
Duo T7500 2.2 GHz.

Strategy 5 is a first modification of Strategy 4.  We
propose  to  use  MMX  or  SSE2  instructions  only  in  the
step consisting in computing the SAD but to implement
the running sum methods [8] without these instructions.

Finally, Strategy 6 consists in using MMX or SSE2
instructions for both computing the SAD and

implementing the running sum method. This strategy
turns  out  to  be  the  fastest,  as  shown  on  Table  1.  For  its
implementation all summands SII ~,)2()1( Î- + qdqq for
each fixed shift d are computed by SSE2 commands and
stored. Then the matrix { }

S
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is calculated by the SSE2 version of the running sum
method. Summation (2) takes no more than 212 nn
operations which are performed in concurrent mode.

To compute the matrix )(dF  with entries )(dpF , the
MMX  or  SSE2  realization  of  the  running  sum  method,
can be applied once more to the matrix )(dG . However,
in the current version it has not been realized yet. Again,
it takes no more than 212 nn  operations if performed in
concurrent mode. So, the total number of operations is
less than 214 nn . It is interesting to note that the number of
operations  does  not  depend  on  the  size  of  the  window
used for the SAD. This fact was confirmed practically on
computation time. The computation times, associated with
each strategy, are summarized in Table 1.The flow chart
of Strategy 6 is depicted in Fig. 3.

A similar technique is proposed in [17, 18]. Our
approach differs from it by using the SAD instead of the
windowed correlation, which requires slower operations
such as multiplication, division and the square root.
Moreover, the 1L  norm is better suited for urban
landscapes, which contain numerous edges.
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Fig.3 Flow chart of Strategy 6.

The function SSE_Diff(d,I(1),I(2)) computes the SAD
matrix D(d) of the aligned stereopair I(1),I(2), the
function SSE_Run_Col_Sum(D(d)) finds sums of columns
Gp(d) whereas Run_Wind_Sum(G(d)) determines the
matrix F(d).

The matrix
{ }

St
Ft ~
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Î
<
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is the matrix of the region-based matching at current time
t  for shifts ( )td  that are looked through before t .



Table 1. Execution time of different strategies computed by one core of PC Intel Core 2 Duo T7500 2.2 GHz
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Direct
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cutoff

Direct
with

SSE2 for
SAD

Direct
with SSE2
for SAD

and cutoff

Storing
SAD
and

running
sum

SSE2 for
SAD,

storing
SAD,

running sum

SSE2 for
SAD, storing
SAD, SSE2
for running

sum
1 2 3 4 5 6

1365
×

948

13
×
13

9×9 N 0:00:37 – – 0:00:06 0:00:05 0:00:03
15×15 ~ 2.8 N 0:01:30 0:00:30 0:00:25 0:00:06 0:00:05 0:00:03
33×33 ~ 13 N 0:05:47 0:01:40 0:01:31 0:00:06 0:00:05 0:00:03

2730
×

1896

25
×
25

17×17 ~ 53 N 0:24:11 0:06:18 0:05:04 0:01:18 0:01:14 0:00:46

5460
×

3792

49
×
49

17×17 ~ 203 N 5:53:11 2:28:38 2:03:52 0:23:15 0:22:32 0:12:16
33×33 ~ 764 N 21:22:31 6:22:00 5:47:28 0:23:15 0:22:32 0:12:16

All presented strategies were tested to compute the
urban DEM shown on figure 4.

3. COMPUTING AN URBAN DEM
As we mentioned above our goal was an optimization

of computation time for estimating a dense disparity map
associated to an urban DEM.

To simplify computations a preliminary alignment of
stereo pair images, shown in Fig.1,2,  using a simple shift
has been performed.

Disparities of the aligned images are estimated not to
exceed 5-6 pixels. This property allows using the optical
flow technique without considering the epipolar
geometry.

The region-based matching version of the optical flow
was applied for its simplicity, which leads to significant
acceleration.

The computation strategies of the region-based
matching mentioned above were used with square
windows of sizes 3÷33.

The optimization technique seriously shortened time
of determining disparities. It made possible application of
subpixel image resolution. In this context, we increased
the stereo image size by factors 2, 3, 4 and 5.

When comparing the nearest neighbor, bilinear and
bicubic interpolations to increase the image size, we
concluded that using the nearest neighbor interpolation
provides the best results. This behavior is probably due to
the fact that the nearest neighbor interpolation smoothes
less image boundaries, which are an essential feature in
urban scenes.

Computation times are described in Tables 1,2.

Table 2. Parallel Execution on Strategy 6 by many cores
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Intel Core 2 Quad Q6600 @ 2.4 GHz

1x 2x 3x 4x

27
30

×1
89

6

25
×2

5

9×
9 0:01:16 0:00:42 0:00:31 0:00:24

The first Table shows execution time of the different
strategies, whereas the second one maps the dependence
of execution time of the parallel versions for the fastest
(i.e. Strategy 6) with respect to the number of cores on a
multiprocessor Intel Core 2 Quad Q6600 2.4 GHz
computer.

Elevation maps for the calibrated stereo pair, which
are shown in Fig 1,2, are depicted in Fig.3,4.

4. CONCLUSION
We investigated several modern computational

techniques to accelerate the estimation of an urban DEM.
The fastest of them, which consists in storing in memory
all absolute values of differences of shifted images for
each current  admissible  shift,  as  well  as  using  the  MMX
or SSE2 realization of the running sum method, speeds
up drastically the dense disparity map computation as
compared with the direct computation (Strategy 1).

We plane to take benefit of this low computation time
to consider more sophisticated models for the 3D
reconstruction. Including prior information, in the
optimized functional, compatible with this modern
computing technology is currently under study.
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Fig.3 – Calculated disparity map of urban scene Fig.4 – Calculated DEM of urban scene


