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Abstract: High-dimensional and high-resolution image
data is increasingly produced by modern medical imaging
equipment. As a consequence, the need for efficient
interactive tools for segmentation and visualization of
these medical images is also increasing. EXxisting software
include state-of-the-art algorithms, but in most cases the
interaction part is limited to 2D mouse/keyboard, despite
the tasks being highly 3D oriented. This project involves
interactive medical image visualization and segmentation,
where true 3D interaction is obtained with stereo graphics
and haptic feedback. Well-known image segmentation
algorithms, e.g., fast marching, fuzzy connectedness,
deformable models, and live-wire, have been implemented
in a framework allowing the user to interact with the algo-
rithms and the volumetric data in an efficient manner. The
data is visualized via multi-planar reformatting, surface
rendering, and hardware-accelerated volume rendering.
We present a case study where liver segmentation is
performed in CT images with high accuracy and precision.
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1 INTRODUCTION

Today imaging systems provide high quality images valu-
able in a number of medical applications, e.g., diagnostics,
treatment planning, surgical planning, and surgical simula-
tion. The images obtained with modern computed tomog-
raphy (CT) and magnetic resonance (MR) devices are 3D
or sometimes 4D and the resolution is high and steadily in-
creasing. The result is a steady flow of high-dimensional
image data to visualize, analyze, and interpret.

One of the most important tasks is segmentation, i.e., sep-
aration of structures from each other and from the back-
ground. Segmentation is needed for, e.g., shape analysis,
volume and area measurements, and extraction of 3D mod-
els. Lack of contrast between different tissues and shape
variability of organs make automatic segmentation hard.
By using interactive segmentation [1], expert knowledge is
used as additional input to the algorithms and thereby fa-
cilitates the task. Interactive segmentation can be divided
into recognition and delineation [2]. Recognition is the task
of roughly determining object location, while delineation
consists of determining the exact extent of the object. Hu-
man users outperform computers in most recognition tasks,
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while computers often are better at delineation. A suc-
cessful interactive method combines these abilities to min-
imize user interaction time, while maintaining user control
to guarantee correctness of the result.

Examples of softwares for interactive medical image pro-
cessing and visualization are 3D Slicer [3], MeVisLab [4],
and ITK-SNAP [5]. These softwares are designed mainly
for use on ordinary workstations with mouse/keyboard in-
teraction, which may become a limitation for complex,
highly 3D oriented tasks. An example where it is shown
how true 3D interaction can improve segmentation is the
LiverPlanner [6].

Our approach is to use haptic feedback and stereo graph-
ics in order to obtain true 3D interaction, see Fig. 1. Hap-
tic interaction provides the possibility of simultaneous ex-
ploration and manipulation of data by providing controlled
force feedback to the user. Direct volume haptics [7, 8]
has shown to be useful in volume exploration [9] and for
interactive medical segmentation [10]. Our work has in-
volved development and implementation of algorithms for
interactive segmentation [11, 12, 13, 14], hardware acceler-
ated volume visualization [15], and volume haptics [16, 17].
These implemementations have been collected in a toolkit
called WISH—interactive segmentation with haptics.

This paper presents our haptics project. Section 2 in-
troduces haptics and haptic rendering. Section 3 describes
our hardware accelerated volume visualization engine. The
developed image processing and interactive segmentation
methods are described in Section 4. Our toolkit is presented
in Section 5. A case study for interactive liver segmentation
is given in Section 6. We summarize our work in Section 7.

Fig. 1: A SenseGraphics display with a PHANToM
device. Stereo graphics is rendered onto a semi-
transparent mirror to obtain co-localization of haptics
and graphics.



Fig. 2: Proxy-based surface haptics. The haptic probe
(white) is connected to a virtual proxy (black) through a
spring-damper.

2 HAPTIC INTERACTION

Haptic interaction with 3D objects is commonly performed
with haptic devices that have one interaction point and three
or six degrees of freedom (DOF). We use a PHANToM
Omni device from Sensable!. The PHANToM is designed
as a stylus, and the haptic feedback is given at the stylus
tip, the haptic probe. This device has 6DOF for input and
3DOF for output, i.e., a position and an orientation for in-
put, and a force vector for output. The device can be used
with an ordinary workstation, but in our work we use a spe-
cialized haptic display from SenseGraphics? that allows for
co-localized haptics and stereo graphics, see Fig. 1.

Haptic rendering algorithms should generate intuitive
force feedback when the user moves the haptic probe so
that it comes in contact with an object. Depending on the
application, there are different object representations to in-
teract with, e.g., explicit and implicit surfaces or, as in this
work, volumetric data.

State-of-the art haptic rendering methods are constraint-
based; the haptic probe is connected to a virtual proxy
point. The proxy is controlled by the application and is
constrained to certain movements, e.g., to stay on a surface.
The connection between the probe and the proxy is made
by a virtual coupling device consisting of a spring and a
damper, see Fig. 2. The rendered force feedback is thereby
proportional to the distance between the haptic probe and
the proxy, i.e.,

f=—k(x—p)—v(x-p),

where x is the probe position, p the proxy position, k the
stiffness of the spring-coupler, y the damping coefficient,
and X and p the velocities of the probe and the proxy, re-
spectively. This idea was first developed for surface hap-
tics [18, 19] and later for volume haptics [7, 8].

In proxy-based volume haptics, the key is to choose an
appropriate local reference frame (LRF) and generate con-
straints for proxy-movements in the LRF. Our current vol-
ume haptics implementation is based on the framework
in [7]. Here, {eq,e,e2} denotes the LRF, p’ the proxy posi-
tion at time step ¢, x' the probe position, andd = (x' —p'~!)
the displacement of the probe relative to the previous proxy
position. In each iteration, the proxy is moved in small steps
according to certain motion rules for each axis in the LRF.
The proxy position at time step ¢ is computed as

2
pr=p"+ Y Apie,
i=0

YURL: http://www.sensable.com/
2URL: http://www.sensegraphics.com/

Fig. 3: Proxy-based volume haptics with a unilateral
constraint for surface simulation. The gradient is used
to compute the normal direction, i.e., eg = —Vf/||Vf]|.
In order to move in the direction —e(, the user has to
apply a force such that |dy| > so/k. Top: |do| < so/k,
which gives Apy = 0, i.e., the proxy will not move. Bot-
tom: |do| > so/k, which gives Apy = |dy| — so/k, i.e., the
proxy will move Appeo.

where Ap; is a motion rule function of the displacement d; =
d - e;. The resulting force is computed as f' = —k(x" —p'),
where k is the stiffness of the spring-coupler. In our work,
we skip the damping term. The motion rule functions can be
connected to haptic transfer functions to interactively tune
the feedback. The motion rule function for a unilateral con-
straint along axis i is defined by

Ay — d; if d;i>0
Pi= max(|d;| —si/k,0) if d;<0°

where s; is the strength of the constraint, in this case the
force threshold that the user must apply to move in the di-
rection —e;. Along +e; we have free motion. This is the
motion rule commonly used for surface simulation with axis
i being the normal direction, see Fig. 3. For a bilateral con-
straint, we have

Ap; = sign(d;) max(|d;| — s;/k,0),

which is used in surface rendering to simulate friction in
the directions orthogonal to the surface normal. With a bi-
lateral constraint for all axes of the LRF, viscosity can be
simulated. In addition to these constraints (defined in [7]),
we also define the motion rule function for a directed force:

Ap; = si/k+di,

which can be used, e.g., to follow a vector field.

The strengths s; of the involved constraints are controlled
through haptic transfer functions, e.g., sigmoid functions
based on the image intensity at the proxy position:

A
5i=5iP) = T igrpa

where A is the maximum strength, 8 controls the center of
the function, and o controls the width of the function.

We combine certain motion rules and LRFs into four hap-
tic modes: surface mode, viscosity mode, potential mode,
and vector mode. These are described in detail in [20].
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Fig. 4: A CT image displayed in the MPR viewer with
an overlay of the segmented liver (magenta) and seed-
region (blue).

3 VISUALIZATION

The 3D image visualization tools available in WISH are
multi-planar reformatting (MPR) and hardware accelerated
volume rendering. The MPR consists of three orthogonal
planes that are controlled with the haptic device. Adjust-
ment of contrast and brightness can be made with a standard
transfer function. The volume slicer also supports rendering
of overlays. This is used in order to, e.g., display an original
image and a segmentation simultaneously, see Fig. 4.

Volume rendering techniques [21, 22] are used to directly
display volumetric data without first converting the data to
an intermediate surface representation. Volume rendering
might, e.g., be used to make important parts of a volume
clearly visible while uninteresting parts are made transpar-
ent or semi-transparent. The most common approach to
perform volume rendering is by using ray-casting. High-
quality volume ray-casting of large datasets is computa-
tionally demanding and therefore not suitable for interactive
renderings when implemented in software.

In recent years, there has been a great development
of consumer graphics hardware where the fixed-function
pipeline in the graphics processing unit (GPU) has been
replaced by programmable vertex processors and fragment
processors. These can be customized for the application
by using so called shader programs. Techniques for per-
forming direct volume rendering on GPUs have evolved
from 2D texture based techniques, to slicing of 3D tex-
tures with viewplane aligned polygons [23], to multi-pass
ray-casting [24], and more recently to single-pass ray-
casting [25]. Our single-pass ray-casting engine [15] is im-
plemented with the OpenGL shading language GLSL [26].
In order to generate the information needed for the ray-
casting at each pixel, we use the bounding box of the vol-
ume as a proxy geometry. For each vertex of the box, we
specify the entry position of the ray ry and the direction
d =ro —c, where c is the camera position. These values
are interpolated across the box faces during rasterization in
order to obtain the correct value for each pixel. Per-pixel
ray-casting is then performed on the GPU by sampling the
3D texture representation of the volume along the paramet-
ric ray r(7) =ro+ TH%\I’ see Fig. 5. The exit point of the
ray is found by performing a quick ray-box intersection.
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Image plane

1,1,1)

Fig. 5: Hardware-accelerated ray-casting. For each
fragment generated in the rasterization of the front-
facing faces of the box, the entry point ro and the direc-
tion d are interpolated. The value 7, for the exit point is
computed by performing ray-box intersection.

With the ray-casting engine, different techniques of com-
positing the samples along the ray are possible. In vol-
ume renderings the colours and opacities are controlled with
transfer functions. We have implemented three composit-
ing modes: (colour-correct) maximum intensity projection
(MIP), front-to-back alpha blending, and iso-surface extrac-
tion with shading. For shading of iso-surfaces, normals are
computed with a gradient filter and stored as colours in an
RGB or RGBA texture. See Fig. 6 for a rendering example.

4 IMAGE HANDLING

Our toolkit includes several image processing and segmen-
tation algorithms. Voxel-wise operations, Gaussian filters,
bilateral filtering [27], gradient filters, gradient vector flow
(GVF) [28], distance transforms, basic morphological op-
erations, etc., are mainly used for pre- or post-processing
purposes in the segmentation pipeline. The toolkit also in-
cludes sophisticated segmentation algorithms that require
more interaction and tuning of parameters:

Fast marching and level set methods [29] belong to
a powerful framework with partial differential equations

Fig. 6: A volume rendering with our hardware-
accelerated ray-caster. Alpha composition of a CT im-
age of the head and torso.



Fig. 7: Fast marching segmentation of the liver in a CT
image. Left: Seed-regions placed inside the liver. Mid-
dle: The cost image. Right: Resulting time-of-arrival
map with overlaid contour obtained by thresholding.

(PDEs). Fast marching methods are essentially efficient nu-
merical schemes for solving the boundary value problem
IVu(e)[| = C(x), u(x)=0onT,

which is called the Eikonal equation. Here, u(x) is time of
arrival and C(x) is a “slowness” or cost function. The equa-
tion is derived by considering the closed surface I" prop-
agating in its normal direction with speed 1/C. The key
is to systematically construct the solution u by propagat-
ing information outward from the boundary condition, from
smaller values of u to larger values. This requires “upwind”
difference schemes in place of classical approximations,
e.g., centered differences. The fast marching algorithm is
accelerated by limiting the computational domain to a nar-
row band in the proximity of the front.

Image segmentation with fast marching methods involves
the design of a cost function C, providing a set of seed-
points representing the initial front, and propagation of the
front until a certain arrival time is reached, see Fig. 7. The
cost image C should have low values in homogeneous parts
and high values at edges. The user places seed-regions in-
side the liver guided by the haptics. C is generated based
on gray-level statistics of the seed-regions. The arrival time
threshold is automatically found by analysis of the average
cost of the narrow band points during propagation.

Live-wire [2, 30] is a semi-automatic segmentation
method for 2D images and slice-wise segmentation of 3D
images. It is based on shortest path calculation through
graph-searching. For every edge in the graph, a cost is as-
signed to represent the “likelihood” that the edge belongs
to a desired boundary in the image. To segment an ob-
ject, the user places a seed-point on the object boundary.
All possible minimum-cost paths from the seed-point to all
other points in the image are computed via Dijkstra’s algo-
rithm [31]. As the user moves the cursor in the image, the
minimum-cost path (the live-wire), from the current posi-
tion of the cursor back to the seed-point is displayed in real-
time. The idea is to have low cost at the desired boundary in
order to make the live-wire “snap” onto it. When the user is
satisfied with a live-wire segment, that segment is frozen by
placing a new seed-point. The tracing then continues from
the new seed-point. In this way, the entire object boundary
can be traced with rather few live-wire segments.

Most 3D extensions of live-wire are based on using the
standard live-wire method on a subset of 2D slices in the
3D volume, and then reconstructing the entire object using
this information [32]. Even though the reconstruction al-
gorithms might take 3D information into account, all user

Fig. 8: Our 3D live-wire method. A number of live-wire
curves (left) are connected to generate a discrete surface
(right).

interaction is performed in 2D. We suggest a more direct
3D approach [13], where live-wire curves are connected to
form discrete surfaces, see Fig. 8. The live-wire curves are
not required to belong to a certain slice, but can be drawn
freely in the volume. In order to place seed-points directly
in 3D, volume haptics guide the user.

Deformable models (snakes) [33] are driven by mini-
mization of an energy functional consisting of an internal
shape regularizing term and several external terms based
on image data. The key is to build the energy functional
so that the desired solution coincides with the global min-
imum of the functional. The two main characteristics of a
deformable surface model are its geometrical representation
and its law of deformation. The geometrical representation
sets the degrees of freedom and the topological flexibility
of the model, while the law of deformation tells how the
model should be deformed in order to fit the underlying im-
age data. The concept has been extended to 3D deformable
surfaces, e.g., [34].

In our work, we use a discrete simplex mesh represen-
tation [35]. In the deformation engine each vertex is re-
garded as a point-mass influenced by internal forces, exter-
nal forces, and damping.

5 OUR TOOLKIT

The core of the WISH software consists of a stand-alone
C++ class library for image analysis, visualization, and
volume haptics. Hence, the algorithms can be integrated
into applications written in C++ or used as command-line
tools. The visualization algorithms are implemented with
OpenGL, and therefore easy to include in any application
where OpenGL is used for graphics rendering. We mainly
use the VTK? file format for volumetric data and a slice se-

3URL: http:/fwww.vtk.org/

Fig. 9: A simplex mesh being deformed to a liver based
on CT data. A user is interacting with the mesh by se-
lecting mesh faces using the haptic probe.



quence reader based on the FreeImage* library that can read
sequences of the common image file formats.

In order to realize the interactive tool we aim for, we
have created an interface between the core functionality
of WISH and the multi-sensory 3D visualization software
H3D API J (version 1.5) from SenseGraphics. H3D API is
a cross-platform open-source API for 3D haptics and graph-
ics based on the X3D° scene-graph standard. The haptic
rendering is performed with OpenHaptics from Sensable.
We set up the main scene using X3D and use Python for
most of the scene graph management. An advantage of us-
ing Python is the possibility to use built-in and external li-
braries for, e.g., file management, database handling, and
user interface development.

The toolkit is availbale for download from the project
webpage http://www.cb.uu.se/research/haptics

6 CASE STUDY

We present results of interactive liver segmentation with fast
marching and deformable models [36]. Liver segmentation
is of great importance in hepatic surgery planning [37] and
also for monitoring liver enlargement which is correlated to
disease progress for patients with liver metastases. Auto-
mated liver segmentation is a hard image analysis task due
to the high anatomical variability of the liver, often higher
among patients with liver tumors, and barely detectable bor-
ders between the liver and its neighboring structures in im-
ages. Our fast and robust semi-automatic fast marching seg-
mentation method was presented in [12]. Four users inde-
pendently segmented the liver in 52 abdominal contrast en-
hanced venous phase CT images from patients with either
carcinoid or endocrine pancreas tumor. The method showed
high reproducibility in pairwise comparisons of the four sets
of segmented datasets. The accuracy was visually verified
by a radiologist by combined examination of contour over-
lays and surface renderings.

In some cases, the fast marching segmentations contain
leakage errors due to low contrast, especially at the bound-
ary between the liver and the heart, see Fig. 10. Subse-
quently, we use the fast marching results in combination
with deformable simplex meshes in order to mitigate the
leakage and thereby obtain a more accurate segmentation.
From the fast marching result, we compute a signed dis-
tance map with positive values outside the contour and neg-
ative values inside the contour.

We quantitatively evaluate segmentation precision and
accuracy [38]. For two segmentations, the precision is com-
puted as the fraction of intersection and union, i.e., the
amount of tissue common to both segmentations divided
by the amount of tissue in the union of the segmentations.
For 23 of the datasets, manual delineations have been per-
formed by two radiologists.

The mean interaction time for seeding of the fast march-
ing method was 40 seconds per dataset. For the subsequent
deformable mesh segmentation, the mean interaction time
is 93 seconds. The interaction time required for the manual
delineation was between 5 and 18 minutes.

4URL: http://freeimage.sourceforge.net/
SURL: http:/fwww.h3d.org/
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Fig. 10: Left: Surface rendering of the fast marching
segmentation for an abnormally shaped liver. Note the
leakage between the liver and the heart. Right: Segmen-
tation obtained with the deformable mesh. The irregu-
lar region caused by leaking is removed thanks to the
built-in shape regularization of the mesh.

For the two sets of 23 manual segmentations performed
by the radiologists, we obtain a mean precision of 88.9%
(CV 1.9%). The mean precision of the fast marching
method is 96.9% (CV 3.8%), which is considerably higher.
For the two sets of 23 simplex mesh segmentations, we ob-
tain a mean precision of 97.8% (CV 0.5%) which indicates
a high reproducibility.

For the fast marching method, the average sensitivity is
93% and the specificity is close to 100%, i.e., only a few
false positive voxels. When we apply the deformable mesh
segmentation, we get a sensitivity increase of about three
percentage points, while the high specificity is maintained.

7 CONCLUSIONS

We have presented our project on interactive medical image
segmentation and visualization in a 3D environment with
haptic feedback. A number of well-known tools specially
tailored and developed for our environment have been inte-
grated into a toolkit. The software is based solely on cross-
platform open-source code and is therefore easily extend-
able. With limited effort, new methods can be integrated by
creating wrappers in the form of H3D API nodes.

In a case study, we demonstrated the performance of the
interactive segmentation tools for liver segmentation from
CT data. First, we used fast marching segmentation with
interactive seeding in order to obtain a fairly accurate seg-
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Fig. 11: Liver segmentation with a simplex mesh. The
external force is based on a signed distance map com-
puted from a fast marching segmentation. The user ap-
plies interaction forces on selected parts of the mesh.



mentation of the liver with high precision. In the subsequent
step, we used our deformable simplex mesh to refine the fast
marching segmentation. The results showed a considerable
increase of accuracy and high precision.

The benefits of using more advanced hardware should be
balanced against the increased hardware costs. Although
the prices of haptic enabled 3D input devices have de-
creased significantly lately, they are still more expensive
than traditional 2D input devices, which ought to be taken
into account in evaluation of our methods. Our bottomline
is however that haptic enabled 3D input devices offer many
new and exciting possibilities for interactive manipulation
and exploration of 3D data.
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