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Abstract: Interest in the field of multiphase queueing sys-
tems has been stimulated by the theoretical values of the 
results as well as by their possible applications in informa-
tion and computing systems, communication networks, and 
automated technological processes. The object of this re-
search in queueing theory is the law of the iterated loga-
rithm (LIL) under the conditions of heavy traffic in multi-
phase queueing systems (MQS). In this paper, the LIL is 
proved for extreme values of important probabilistic cha-
racteristics of the MQS investigated as well as maxima of 
the summary queue length of customers and maxima of the 
queue length of customers.   
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1. INTRODUCTION 
Interest in the field of multiphase queueing systems 

has been stimulated by the theoretical values of the results 
as well as by their possible applications in information and 
computing systems, communication networks, and 
automated technological processes (see, for example, [5]). 
The MQS is a queueing system when a customer does not 
visit same queueing node twice (see, for example, [2]). 
Therefore, such a system is a special case of the open 
Jackson network (see, for example, [4]).  

Thus, in this paper, theorems on the LIL for the 
extreme values of the main probability characteristics of 
MQS in heavy traffic (maxima of the summary queue 
length of customers, maxima of the queue length of 
customers) are proved. The main tools for the analysis of 
MQS in heavy traffic are the functional LIL for a Wiener 
process and a renewal process (proof can be found in [1]). 

  
2. MAIN RESULTS  

We investigate here a k -phase MQS (i.e., when a 
customer is served in the j -th phase of the MQS, he goes 
to the 1j + -st phase of the MQS, and after the customer is 
served in the k -phase of MQS, then he leaves the MQS). 
Let us denote nt  as the time of arrival of the n -th 

customer; ( )j
nS  as the service time of the n -th customer in 

the j -th phase of the MQS; 1n n nz t t+= − . Let us 
introduce mutually independent renewal processes 
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until time t  (if devices are working without time 
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customers which arrive at MQS until a time moment t ). 
Next, denote by ( )j tτ  the total number of customers 

after service departure from the j -th phase of the MQS 

until time t ; ( )jQ t  as the queue length of customers in 

the j -th phase of MQS at the time moment t ; 
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)(  stands for the summary queue 

length of customers until the j -th phase of the MQS at 
the time moment 1 2t j … k, = , , ,  and 0t > .  
Suppose that the queue length of customers in each phase 
of the MQS is unlimited, the service principle of 
customers is “first come, first served” (FCFS). All 
random variables are defined on the common probability 
space ( F PΩ, , ).  

Let interarrival times ( nz ) at the MQS and service times 

( j
nS ) in every phase of the MQS for 1 2j … k= , , ,  be 

mutually independent identically distributed random 
variables.  
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Assume the following condition to be fulfilled  
0...10 >>>> kβββ     Then   

            .0... 11 >>>> − ααα kk                              (1) 
One of the main results of the work is a theorem on 

the LIL for the summary length of customers.  
 
 



Theorem 2.1. If condition (1) is fulfilled, then  
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for .,...,2,1 kj =   
 
In relations  
          1( ) ( ) ( )j j jQ t t tτ τ−= − ,  (2) 
 
         1( ) ( ( ) ( ))j t j jQ t f xτ −= ⋅ − ⋅ ,  (3) 
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are obtained for kj ,...,2,1=  and  ( )( ) ( )−=⋅ txxf t  
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Next, using (2) and (3), we obtain 
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1 2j … k= , , , .  
 From (2) and (5) we get  
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Since for any ( 1 2 )j j … k= , , ,   
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Denote the families of random functions as 10 ≤≤ t  
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Therefore, making use of (8), we can get  
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Also we note that  

 
almost  everywhere for  kj ,...2,1=  (see [1]). Thus, 
similarly as in [1] we can prove that the first term in (9) 
tends to zero.  

Now we prove that the second term in (9) also tends 
to zero. Using 1 0j jα α− − <  for 1 2j … k= , , ,  and 
again, just like in [6], we prove that the second term in 
inequality (9) tends to zero.  
Hence we prove  
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for kj ,...,2,1=  The proof is complete.  
Now we present the theorem on the LIL for the maxima of 
the queue length of customers.  
 
 
Theorem 2.2. If condition (1) is fulfilled, then  
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for  kj ,...,2,1= .  
 
The theorem is proved similarly as Theorem 2.1. The proof 
is complete.  
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