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Abstract: Besides the high performance simultaneous 
localization and mapping algorithm (SLAM) has to build 
the 3D mapping at the same time and to estimate the pose 
of the locomotion in real time, the flawlessly mobile 
robotic application tasks, meanwhile should be able to 
recognize objects in the environment in order to achieve 
the variety practical missions. This paper hence presents 
a coordination between the real-time SLAM and artificial 
landmark recognition by fusion data from the 2D/3D 
sensors. The new 3D sensor namely the Photonic Mixer 
Devices (PMD) purposes real-time capturing the 
surrounding volume. The 2D high resolution image is 
registered on the 3D volume subsequently rescaling and 
calibration both sensors. Visual input from the 2D 
camera not only delivers high resolution texture data on 
3D volume but also use for object recognition. Moreover, 
the ICP algorithm is taken over the theatrical image 
registration due to yield the real time data frames 
registration. 

Keywords: PMD camera, SLAM, ICP algorithm, mobile 
robotics and image registration. 

1. INTRODUCTION 
Nowadays, the complex functions are included in one 
compact mobile robotics such as a wireless/GPS 
communications, smart obstacle avoidances, vision 
system as well as self localization techniques. The on-
line, real time three dimension map building is also a very 
challenging task for modern mobile robotic systems to 
obtain the realistic visual appearance of particular 
environmental volume. The simultaneous localization and 
mapping (SLAM) is a technique used for map building. 
When a mobile robotic moves through an unknown 
environment, can localize themselves autonomously. 

The SLAM can be represented by various active sources 
e.g. ultrasonic sensors and laser sensors, or by passive 
sources, i.e. vision sensors, from many kinds of cameras. 
Such cameras can be used to find unique characteristics of 
features based on the pixels in and around the features, 
whereas the active sources can’t. Additionally,  
laser scanners have been widely used in mobile robotics 
because they can ideally give the precision of raw data. 
However, some drawbacks still have to improve, for 
example an inferior output in cluttered environments, high 
cost, heavy and consumable energy. One outstanding 
sensor, namely PMD camera, which can provide 3D data 
without robust against ambient light and weakly textured 
area, dominated in 3D scene applications [1][2], is 
proposed here. It is capable of capturing reliable depth 

images directly in real-time. The PMD is also compact 
and affordable, which makes it attractive for versatile 
applications including surveillance and computer vision. 
Furthermore, a resulting gray scale image can be applied 
for basic vision recognition. For these reason, PMD is a 
novel attractive tools for implement the SLAM. 

 

Fig.1-Coordination of SLAM and landmark 
recognition 

However, the high performance of SLAM is not only 
building a 3D mapping in real time but also should 
recognize objects, avoiding the obstacle as well as 
estimate the trajectory simultaneously. The prominent 
output from PMD is an each pixel depth measurement. 
The high resolution 2D camera is then combined in order 
to compensate the lack of complicated image processing 
and support the complex machine learning requirements. 
Nevertheless, searching the objects within a complex 
environment isn’t the easy tasks.  The Haar-like Features 
is one method, which the searching is take place in real-
time. This method can provide accuracy and robustness 
for detecting the objects. It can be also applied to detect 
any features, patterns, shapes, color even in complex 
environmental. Figure 1 demonstrates an over all idea for 
the coordination SLAM and artificial landmark 
recognition. Moreover, the differential pixel resolutions 
and position overlapping due to machine setting up are 
considered in this work. The MERLIN (Mobile 
Experimental Robots for Locomotion and Intelligent 
Navigation) is used in a test platform. This robot is the 
high performance indoor environment. It communicates 
to a work station via a wireless module, and can be 
automatically controlled, or can be manually controlled 
by a joystick.  

The Iterative Closest Point (ICP) is implemented for 3D 
map building. The ICP is based on searching of the 
nearest point-to-point, point-to-tangent plane pairs and 



point-to-projection, and additionally estimating the rigid 
transformation, which aligns them.  The main of arduous 
computing part of ICP is an exhaustive search for 
correspondence. 

For the comprehensive results, this paper augments the 
SLAM using the novel alternative output after 
combination a high resolution 2D camera with depth data 
from PMD. The brief summary principles of the PMD 
camera, data fusion, images registration as well as future 
suggestion plan are presented in this paper. 

2. THE PRINCIPLE OF PMD CAMERA 

The so called PMD camera as a smart pixel can be an 
integration element for a 3D imaging camera on a chip 
based on standard CCD- or CMOS-technology [3]. The 
main component is an array sensor. It can measure the 
distance to the target in parallel without scanning. The 
key execution is based on Time-Of-Flight principle. A 
light pulse is transmitted from a sender unit, and the target 
distance is measured by determining the turn around time 
back to the receiver. According to the speed of light, the 
interval distance can easily be calculated. Figure 2 shows 
models and the principle Time of Flight based on PMD 
camera. 

(a) 

   

(b)                                        (c) 

Fig.2 - a) Time of Flight principle PMD cameras 
b) A2   c) 13k 

The PMD chip is the prominent component, which 
provides depth information in each pixel of the 
corresponding point in the object plane. Additionally, the 
PMD camera has the advantage of fast image mapping. 
This camera enables fast optical sensing and 
demodulation of incoherent light signals in one 
component. It also gives both intensity and distance for 
each pixel. The PMD can be used to get the excellent 
depth information as well as gray scale value of the scene. 
Currently, the PMD sensor devices provide the 
resolutions of pixels 48x64 pixels (model 3k), 64x16 
pixels (model A2) and 160x120 pixels (model 19k). A 
common modulation frequency is 20 MHz, which results 
in an unequivocal distance range of 7.5 to 40 meters. The 
PMD sensor calculates the distance between obstacle and 
camera by measuring the phase shift. The depth data is 
obtained from the phase shift of the out-coming and 

incoming signals. The equation for autocorrelation is: 
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Where T is the time of integration, the correlation is 
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Where 0c  is the speed of light and modf  is the modulation 
frequency.  

3. CAMERAS SETUP AND CALIBRATION 
The PMD camera that used in the experiment is 3k-S 
models with the resolution 64× 48 pixels, horizontal field 
of view (FOV) is approximately 10.0 o  and 12.5 o  from 
vertical. The 2D camera has the resolution of 640× 480 
pixels, 45 o  and 34 o  from horizontal and vertical, 
respectively. The differential FOV and equipping position 
between both cameras impact on the overlap between 
output frames. Figure 3(a-c) shows the differential field of 
view from PMD and 2D cameras.  

 
(a)    (b)        (c) 

 
Fig.3 - a) Fusion 2D/3D; Output b) Depth PMD c) 2D  

Hence, in this study, the calibration method is considered. 
The Camera calibration is an essential step before handle 
image processing tasks in order to extract metric 
information from image frames, especially the calculation 
between two cameras. This research acquires image data 
from two camera types, PMD and 2D camera. The camera 
calibration is therefore the most essential procedure 
before going forward in the next step. [4][5] proposed a 
flexible technique for calibration, which requires the 
camera to observe a planar pattern shown at a few 
different orientations. However, the population calibration 
tools by using OpenCV library base on [6] method is used 
in this research. The algorithm implements in camera 
calibration toolbox for MATLAB and OpenCV Intel C++ 
library.  

4. AN IMAGE REGISTRATION 

Overall steps of SLAM and object recognition are to 
integrate many algorithms in order to get a final 
outcomes. Figure 4 shows the algorithm box sets. The 2D 
camera uses for demanding and controlling the behavior 



of image registration. Thus, many algorithms are applied 
before yielding the final output. The PMD camera is used 
for providing the exact depth data to generate the high 
performance SLAM in real-time. The detail of every box 
set is proposed in following sections. 

 

 

Fig.4-Diagram of 3D mapping generation. 

4.1 GOOD FEATURE TRACKING AND 
CORRESPONDENCE FINDING 

In the first step for SLAM, it is assumed that the mobile 
robotic is relocated from the first position to another. The 
correspondence points between two frames have to be 
found in order to merge those frames. The good feature 
tracking is a feature point extracted from an image. The 
Open Source Computer Vision Library, OpenCV is the 
very famous algorithms for image processing and 
computer vision. Some libraries are used in basic image 
analysis such as corner detection, canny edge detection 
and non-maxima suppression[7]. They proposed an 
iterative image registration technique for the stereo vision 
application, which is the well-known good feature 
tracking. This technique computes the flow for each pixel 
between image frames. Figure 5 illustrates the 
corresponding point example between two image frames.  

 

Fig.5 - Corresponding points two image frames 

4.2 OPTICAL FLOW  

The unpredictable mobile robot locomotion for obstacle 
avoidance is a complex task to generate 3D mapping. In 
addition, posing robot, for instance turn left, right, 
forward, backward and sloppy climbing up is an arduous 
achievement in the 3D mapping. In fact, the direction that 
should merge the frame is very importance. The optical 
flow is hence perused to seek the pose estimation of 
mobile robotic. One of the famous optical flow technique 
is the motion template. It was proposed by [8][9]. They 
proposed effective methods to track the object movement 
using the differencing edge of segmented moving of 
silhouettes for camera from frame-to-frame. A model of 

zeppelin airship movement is demonstrated in figure 6. 
The white indication is the current zeppelin position. 
Coming up of new silhouettes are captured in next frame 
and overlaid on the white position. Each step of fading 
sequences of silhouettes are recorded and referred to as 
the motion history image (MHI).   

Fig.6-Optical flow of motion 

The image input of the camera frame should sufficiently 
contain texture information in order to estimate the 
correspondence points between two frames. It is assumed 
that in figure 6, the first frame is captured at time t  and 
point ( )yx, . This point contains the color 
intensity ( )tyxI ,, . When the zeppelin changes the 
position, meanwhile camera capture the second frame but 
the same point is still keep in the second frame. The 
intensity in the present frame is the same as in the 
previous frame.   

( ) ),,(,, 12 tzxIttyyxxI =Δ+Δ+Δ+  (4) 

Where yx,  is the coordinate in x-axis and y-axis, 
respectively.  The Tayloy serious represents the equation 
4 as a summation term. 
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It is assumed that the higher order terms are very small 
and can be ignored. Equation 5 is equal to equation 6. 
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Where I∇  is the intensity gradient and v
r

 is the image 
velocity at pixel ),( yx . 

 

Fig.7 - Optical flow output 

Figure 7 shows the optical flow output. The camera 
moves from right side to left side with speed 
approximately 10cm/1sec. Moreover, the arrow length 
expresses the direction of mobile robot locomotion. The 
directions of optical flow are used to find the direction for 
merging the image frames in order to generate SLAM in 
real time.   

4.3 CONVEX SET 

After realizing the direction of robot, the next issue is 
how to find the overlapping of image frames. It can be 
noticed from figure 9 that the mobile robot moves from 
the previous position (1st) to the next position (2nd). Some 
corresponding points still appear on both frames. To 
determine this, the fixing boundary of corresponding 
points is essentially to set up. The Quick hull, Graham’s 
scan, Jarvis March and Convex hull are very famous for 
determining the smallest interested convex of clown 
points. Figure 8 demonstrates the steps to find the convex 
hull. Step1: finding the lowest point (L) within all set 
points. Step2: sorting set points in counterclockwise 
direction and network for each point. Step3: sorting by 
calculating the relative angle. The orientation of three 
points p, q and r are the ordering points in network. The  

angles pqφ and prφ  in counterclockwise are determined. 
The smaller angle is a convex vertex; removed a 
nonconvex from the network.  

 
Fig.8 - Computation of Convex Hull 

Figure 9 shows the boundary of corresponding area when 
camera changes the positions.  

 
Fig.9 - Corresponding area 

4.4 LANDMARK RECOGNITION 

This work adapts the Haar-like Features with OpenCv 
library [10][11]. The Haar-like Features is the real-time, 
accuracy and robustness approach for detecting the 
objects. It can be applied to detect their features, patterns, 
shape and color even in complex environment. 

 
Fig.10 - Positive sample in every angle of artificial 

landmarks used for training classifiers 
 
The Cascade of Classifiers has to collect the negative and 
positive samples. The negative samples are the images 
that must not contain any object inside for detecting 
requirement, artificial landmark. In this experiment, the 
7170 negative samples are used. The positive samples are 
the images that must contain the artificial landmark, and 
there are 1500 positive samples. Figure 10 shows the 
positive samples for the classifiers. This work uses the 
Intel Pentium 4 1.8GHz, 3GB RAM. The training times 
are approximately 80 hours. Figure 11 shows the output 
to detect artificial landmark in real time 
 

 
 

Fig.11 – Output of recognition artificial landmark 
 
5. IMAGES REGISTRATION 
The 3D mapping acquires pose estimation of mobile 
robot. The 3D geometry is simultaneously collected by 
two sources while robot moves through the captured 
scene. The main procedure to grab three dimension 
screens is presciently robot pose estimation. Then, the 3D 
mapping yields the texture for the 3D model. If the 
mobile robot is able to precise locomotion, the 
registration 3D mapping can be effortlessly generated. 
Actually, unpredictably noise, relative pose as well as 
bumpy trajectory that cause knottiness the geometric 
overlapping for capturing scenes has to be considered for 
image registration.  



In general, the iterative closest point (ICP) is broadly used 
for registration of 3D clouds. [12] presented the similar  
transformation parameters in m-dimensional space that 
give the least mean squared error between these point 
patterns and introduceed to solve the special absolute 
orientation problem by erecting a reduced gradient 
algorithm together with its convergence proof and by 
generalizing it to the case with weighted errors. This is 
based on the classic absolute orientation technique.  An 
applied ICP algorithm justifie to generate mapping. The 
results are very excellent when apply to solve SLAM 
problem. The general solutions of mapping are used to 
find the similarity transformation parameters. These give 
the minimum value of the mean squared error of two 
point patterns. It is assumed that two different partial 
image patterns, ),...,,( 21 nppp=P and ),...,,( 21 nqqq=Q are 
cloud interaction points between two robot positions. The 
aim is to properly estimate the next position for getting an 
ideal minimum error. 
 

),...,(),...,(),...,( 111 nnn qqeepp ==− QEP  (11) 

∑
=

+−=
n

i
ii qcp

n
cE

1

2)(1),( tRtR,  (12) 

Where ),...,( 1 neeE is an error vector. Equation (12) is an 
observation equation, which is achieved by least squares 
minimization and ),( ctR,  represents the optimum 
rotation, translation and scaling. Where TVUΛ is a 
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Where∑ ab is a covariance matrix of P  and Q , while 

pμ and qμ are mean vectors of P  and Q . 2
pσ , and 

qμ
 are 

variances around the mean vectors of P  and Q  
respectively. 
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The registration can be used to calculate the optimal 
rotation by (20). The effect of rotation matrix can be 
immediately solved the translation as in equation (21). 
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6. SIMULATION RESULTS 

In order to prove the previous theory, the simulation 
results using MATLAB is discussed in this section. The 
simulation presents two crowning points with differential 
rotation and translation element. From the figure 12, 

tztytx === ),cos(),sin(  are assumed as the first data 
set, where t is a various time. The data1 is multiplied with 
random rotation matrix, R, and translation matrix, T. The 
ICP algorithm calculates the translation matrix, rotation 
matrix and both registration data as shown in figure 12 
(b). The figures 12(c) and (d) show the random data using 
a pseudo-random generated function. The simulation 
results prove that the translation and rotation matrix are 
found and matched with differential two corresponding 
points. The simulation results give the appropriate results 
can be applied in the next step of experiments.  

 

Fig.12 - Simulation results of rotation and translation 
matrix using ICP  

7. EXPERIMENTAL RESULTS 
In the experiment, the mobile robot MERLIN (Mobile 
Experimental Robots for Locomotion and Intelligent 
Navigation) is used as a test platform. It can be used for 
high performance indoor and outdoor off-road . The robot 
is equipped with a PMD, a 2D camera, a 16bit 
microcontroller and an embedded PC. The PMD and the 
2D cameras are mounted on the top with a proper 
inclination angle. Figure 13 shows the mobile robot 
MERLIN and (b) shows the one frame output from 
combination between 2D/3D sensors. 



         

 
      (a)                                      (b) 

Fig.13 – (a) MERLIN (b) output 2D/3D 
 
The experiments test in the corridor inside the building. 
Figure 14 demonstrates the indoor 3D mapping in the 
corridor. The detail of fusion data between 2D/3D sensors 
have been enhanced in our previous work [13]. It can be 
seen that the mapping provides more texture information, 
which comprehends the user. Figure 14 (a-b) 
demonstrates the coordination between SLAM and the 
artificial landmark. Not only the system can generate the 
3D mapping but also recognize the artificial landmark in 
the cutter environment. As these results, the mobile 
robotic can afterward apply to detect other objects, by 
training more interested objects causing the over all robot 
performance to be improved. 

 
(a) 

 
(b) 

Fig.14 – Coordination of SLAM and artificial 
landmark recognition within 3D environment 

8. CONCLUSIONS AND FUTURE WORKS 
This paper presents the SLAM by using a new type of 3D 
sensor, PMD camera to cooperate with the artificial 
landmark recognition using Haar-like features in order to 
apply in various mobile robotic application tasks. The 
output illustrates that it is able to detect and to recognize 
the objects with different appearance, despite severe 
occlusions and cluttered backgrounds. The PMD camera 
is very attractive in terms of real time data capturing. To 
acquire more reliability of 3D texture, the fusion data 
between two sensors, 3D time of flight and 2D high 
resolution color camera are presented. The mobile robot 
locomotion is the correspondence position to yield the 
entire environmental data within tracking trajectory. This 
enables robot to control itself autonomously. However, 
the quality of output can be improved by using the better 

quality from 2D camera and by increasing the resolution 
of PMD camera that has been researched. The noise 
reduction will be presented in the next experiments. In the 
future work, the algorithms for the nearest rang reading 
(NR) or the nearest range reading considering color 
(NRC) will be proposed to reduce the noise in order to 
yield better and reliable output. 

9. ACKNOWLEDGMENT 
We would like to thank the German Academic Exchange 
Service (DAAD) for providing financial support in the 
form of scholarship grants. 

10. REFERENCES 
[1] R. Lange. 3D Time-Of-Flight Distance Measurement 

with Custom Solid-State Image Sensors in 
CMOS/CCD-Technology. PhD thesis, University of 
Siegen, 2000. 

[2] http://www.pmdtec.com 
[3] Thorsten Ringbech, Bianca Hagebeuker. A 3D Time 

of Flight Camera for Object Detection. Optical 3-D 
Measurement Techniques, 9-12July, 2007. Zurich.  

[4] Zhengyou Zhang. A Flexible New Technique for 
Camera Calibration. Microsoft Research,13 Aug,2008. 

[5] Henry Medeiros, Hidekazu Iwaki and Johnny Park. 
Online Distributed Calibration of a Large Network of 
Wireless Cameras Using Dynamic Clustering, 
Distributed Smart Cameras, 2008. ICDSC 2008, 7-11 
Sept. 2008. p. 1-10. 

[6] Jean-Yves Bouguet, Ph.D. 
http://vision.caltech.edu/bouguetj/calib_doc/index.htm
#system. 

[7] Jianbo Shi, Carlo Tomasi. Good Features to Track. 
IEEE Conference on Computer Vision and Pattern 
Recognition (CVPR94) Seattle, June 1994. 

[8] Bruce D. Lucas. An Iterative Image Registration 
Technique with an Application to Stereo Vision. 
Proceedings DARPA Image Understanding 
Workshop, April 1981, pp. 121-130. 

[9] A. Bruhn, J. Weickert and C. Schnorr. Lucas/Kanade 
Meets Horn/Schunck:  Combining Local and Global 
Optic Flow Methods, Internatinal Journal of 
Computer Vision. 211-231, 2005. 

[10] Sara Mitri, Simone Frintrop,Kai Pervölz, 
Hartmut Surmann and Andreas Nüchter. Robust 
Object Detection at Regions of Interest with an 
Application in Ball Recognition, 2005. 

[11] Paul Viola and Michael Jones. Rapid Object 
Detection using a Boosted Cascade of Simple 
Features. Conference on Computer Vision and Pattern 
Recognition, 2001. 

[12] Gaojin Wen, Zhaoqi Wang, Shihong Xia and 
Dengming Zhu. Least-squares fitting of multiple M-
dimensional point sets. The Visual Computer: 
International Journal of Computer Graphics, Vol 22, 
Pages 387-398, June 2006.  

[13] C. Joochim and H. Roth. Development of a 3D 
Mapping using 2D/3D Sensors for Mobile Robot 
Locomotion. IEEE international conference on 
Technologies for Practical Robot Applications 
(TePRA), November 10-11, 2008. Woburn MA, USA.  


