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Abstract. The paper is devoted the problem of robust forecasting for the beta-mixed 
hierarchical models of grouped binary data in the case of stochastic additive distortions of 
binary observations. In the case of known lower and upper bounds of the distortion intervals, a 
new robust minimax Bayes predictor is developed. The performance of the proposed 
forecasting technique is validated by computer simulation. 

1. Introduction 
Grouped binary data frequently arises in longitudinal studies that are carried out over a group of 

similar objects [4]. A natural way to describe this kind of data is using the binomial model [2]. However, it 
was noticed that this simple model often leads to inaccurate statistical inference due to so called "over-
dispersion" effects [1]. These effects may occur for two main reasons: intergroup correlation (violation of the 
independence assumption of the experiment outcomes for a particular object) and intragroup correlation that 
is caused by heterogeneity among objects [7]. For these reasons, special "random effects" models are used to 
describe the heterogeneity and correlated outcomes [3]. 

Beta-mixed hierarchical models of grouped binary data are widely used in practical applications 
when the information about the experiments conditions is not available [4]. The most popular models of this 
class are the beta-binomial and beta-logistic models. To forecast the response probabilities in the beta-mixed 
hierarchical model, the Bayes approach is traditionally used. 

In real life, the observed binary outcomes are often misclassified, and the classical statistical proce-
dures that are optimal for the hypothetical model may loose their "good" properties under distortions [6]. In 
our previous work [8], it was proved that the classical Bayes predictor is not optimal under distortions and a 
new robust predictor for the case of known distortion levels was proposed. In this paper, we consider the case 
when the distortion levels interval is known and propose a new robust minimax predictor. The performance 
of the developed forecasting technique is illustrated by computer simulation results. 

2. Mathematical Models and Problem Statement 

Let us consider k objects with properties Zi ∈ Rm, i = 1, 2, …, k, and a random event A, and let 
i
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n
iniii BBBB }1,0{),,,( 21 ∈=   be results of ni Bernoulli experiments with the event A over the object i. Let 

us make the following three assumptions. 
A1. The probability properties of the objects are stable in time. 
A2. For the object i, the probability of success pi is a random variable that has the beta distribution 

with true unknown parameters )(),( 00
iiii ZfZf βα βα == . 

A3. The random variables p1, p2, …, pk are independent in total. 
Let us call the defined above set of models the family of the beta-mixed hierarchical models for 

grouped binary data. A concrete model is determined by a pair of functions fα(.) : Rm → R+,  fβ(.) : Rm → R+. 
Suppose that the data B = {B1, B2, ..., Bk} is distorted by random errors {ηij} as 
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where ⊕ is the exclusive logical XOR operator, {ηij} are the independent Bernoulli random variables 
(i = 1, 2, …, k,  j = 1, 2, …, ni,), 0

rε  are the true unknown values of the distortion levels, and the max
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the known lower and upper bounds for 0
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The problem is to forecast the unknown success probabilities p1, p2, …, pk having the distorted sam-
ple X = {x1, x2, …, xn} that is calculated using the contaminated matrix B~  as ∑ =
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3. Robust Forecasting 

In our previous work [8], it was proved that for the case of known distortion levels 0
1

0
0 ,εε , the Bayes 

forecast function for the i-th object can be expressed as 
 ,)βα()α(),(ω),;(

0 0001010 ∑=ε +++⋅εε=εε
n

l i
iiii

sl
i nlsp  (2) 

where s = xi is the number of successes observed for the object i, and 
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Let us consider the problem of construction the minimax forecast of the response probability pi that provides 
the minimum mean square error for the “worst” values of the distortion levels. Since the Bayes forecast (2) is 
mean square optimal when 0

00 ε=ε , 0
11 ε=ε , the minimax forecast function can be calculated as );( *εε spi , 

where the tuning parameter T),( *
1

*
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* εε=ε  is defined as the solution of the following optimization problem 
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Here )|);(( 02 εεε spr i  is the mean square error of the forecast );( εε spi  on condition that the true values of the 

distortion levels were ε0, ],[],[ 1100
maxminmaxmin εεεεε ×= . The problem (3) is solved in the following Theorem 

that is based on the given below lemmas. 
Lemma 1. Let )(spi  be some forecast function of the response probability pi, then the mean square error of 

)(spi  can be expressed as 
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Proof. The mean square error of the forecast )(spi  is defined as 
}){(}{2}{}){( 222 iii pEppEpEppE  +⋅−=− , where p is a Beta random variable with the parameters 00 , ii βα . 

Using the properties of the Beta distribution, the first summand is expressed as ]2[
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Employing the conditional expectation formula, the second summand can be simplified to 
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Lemma 2. The mathematical expectation of the function 1)1()( −−ξ+α=ξf  of the beta-binomial random 
variable ξ with the parameters n, α, β is calculated as 
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Proof. By definition, the mathematical expectation of f(ξ) is expressed as 
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Let us transform the latter expression in the following way 

 .
)1(

)()1(

1
1

1
1})1{(

0
1
0

1
0

1
01 ∑
∏

∏∏
=

−
=

−−
=

−
=−

++−

+⋅+−
⋅

−++
−+

⋅
−

=−+
n

r
n
j

rn
j

r
jr

n
j

jj
C

n
E

βα

βα

βα
βα

α
ξα   

Since the sum by r contains the elements of the probability row for the beta-binomial distribution with the 
parameters n, α – 1, β, it is equal to one. It proves the lemma. 
Lemma 3. For the conditional mean square error of the forecast function );( *εε spi , the following asymptotic 
expansion holds: 
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Proof. Using the results from our previous work [8], one can show that the following asymptotic expansions 
for the forecast functions );( *εε spi , );( 0εε spi  hold 
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where )(0 spi  is the classical Bayes forecast for the beta-mixed hierarchical models 
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and the coefficients are calculated as 
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Besides, as follows from [6], i
s
,επ  satisfies the following asymptotic expansion 
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Let us plug the given above expansions into the expression for the conditional mean square forecast error 
)|);(( 02 εεε spr i  and collect the terms with *
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The given sum can be considered the mathematical expectation of some function of the beta-binomial ran-
dom variable ξ with the parameters n, α, β: 
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Employing now the properties of the beta-binomial distribution and the result of Lemma 2: 
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to the expression (4) reduces i
0µ  to the coefficient for 0

0ε  given in the statement of this lemma. The coeffi-
cient for 1

0ε  is derived in the same way. 
Theorem. For the beta-mixed hierarchical model of grouped binary data under distortions (1), the minimax 
forecast );( *εε spi  is calculated on the upper bound of the distortion levels interval maxε=ε* . 
Proof. As follows from Lemmas 1, 3, the conditional mean square forecast error can be expressed as 
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  where 0, 10 >µµ ii . Hence, when *ε  is fixed, the maximum of r2(.) 
is achieved when ε0 = εmax. On the other hand, from the properties of the Bayes forecast follows that when ε0 
is fixed, the minimum of r2(.) is reached when 0* ε=ε . As a result, the solution of the problem (3) is 

maxε=ε* . 
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4. Computer simulation results 
To demonstrate the performance of the developed robust forecasting technique, the following com-

puter simulation was made. Assuming that the true parameter values of the beta distribution were α = 0.5, 
β = 9.5, there were generated k = 10000 realizations of the corresponding beta random variable. Then, for 
each realization (object), a random Bernoulli sample of size n = 10 was generated. Every sample was dis-
torted using the expression (1); it was assumed that ]05.0,0[0

1
0
0 ∈ε=ε  and the true value of the distortion 

level ε belonged to the set {0, 0.01, …, 0.05}. For each distortion level, the classical and proposed predictors 
of the response probabilities were calculated. Finally, 95%-confidence intervals of the mean square forecast 
error were computed for both predictors. The results of the computer simulation allow making a conclusion 
that the proposed robust minimax predictor ensures much lower mean square forecast error when compared 
to the classical approach. In particular, for the case ε = 0.05, the classical predictor leads to the error 0.070, 
while the error of the proposed predictor is only 0.054 that is 1.3 times better. 

5. Conclusion 
In the case of known lower and upper bounds of the additive stochastic distortion levels, the devel-

oped robust minimax Bayes predictor for the beta-mixed hierarchical models of grouped binary data ensures 
much lower mean square forecast error then the classical Bayes predictor. 
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