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Abstract. In this paper, adaptive CFAR tests are described which allow one to classify radar 
clutter into one of several major categories, including bird, weather, and target classes. These 
tests do not require the arbitrary selection of priors as in the Bayesian classifier. The decision 
rule of the recognition techniques is in the form of associating the p-dimensional vector of 
observations on the object with one of the m specific classes. When there is the possibility that 
the object does not belong to any of the m classes, then this object is to be classified as 
belonging to one of the m classes or to class m+1 whose distribution is unspecified. The tests 
are invariant to intensity changes in the clutter background and achieve a fixed probability of a 
false alarm. 

1. Introduction 
Modern air traffic control radar systems rely heavily on automatic target detection and tracking to 

maximize air traffic safety. Moving target indicator and moving target detector algorithms achieve good tar-
get detection performance through the suppression of most or all forms of radar clutter. Unfortunately, real-
time information on airborne hazards to aircraft, such as birds and storm systems, is also suppressed. The 
ability to classify clutter and hence identify these hazards can thus contribute significantly to air traffic safe-
ty. In most instances, the prior information about the target observable is limited and the background types 
vary widely. A possible way to achieve a high probability of detection at a low false-alarm rate for these 
stressing background clutter-limited situations is through the use of adaptive signal processing techniques 
that exploit differences between the target signatures and the background in multiple dimensional spaces. 

The process of recognition can be formalized as follows. The unprocessed radar data are passed 
through a feature extractor, which transforms the available data samples into a set of separable features. 
These features are derived from the reflection coefficients computed using the multisegment version of 
Burg’s formula [2]. The aforementioned coefficients (that contain all spectral information, including the 
mean Doppler shift) are then transformed and grouped to satisfy the requirements for multivariate Gaussian 
behavior. Only information that is different from class to class is maintained, and in such a form that a relia-
ble decision, based on a discriminant function derived from the above features, may be made. 

Stehwien and Haykin [8] solved the problem of statistical recognition of target in radar clutter in a 
Bayesian framework. In this paper, the problem is treated in a non-Bayesian setting. A recognition technique 
is described which allows one to classify target detected in radar clutter into one of several major categories, 
including bird, weather, and target classes. This technique is based on applying the theory of generalized 
maximum likelihood ratio testing for composite hypotheses. The results of computer simulations confirm the 
validity of the theoretical predictions of performance of the suggested technique. 

The outline of the paper is as follows. A problem of target signal detection in clutter is considered in 
Section 2. Section 3 is devoted to a problem of recognition of detected target.  

2. Target signal detection 
The problem of detecting the unknown deterministic signal s in the presence of a clutter process, 

which is incompletely specified, can be viewed as a binary hypothesis-testing problem. The decision is based 
on a sample of observation vectors xi = (xi1, ... ,xip)′, i = 1(1)n, each of which is composed of clutter wi = (wi1, 
... ,wip)′ under the hypothesis H0 and a signal s = (s1, ... ,sp)′ added to clutter wi under the alternative H1, 
where n > p. The two hypotheses that the detector must distinguish are given by 

H0: X = W                  (clutter alone), (1) 
H1: X = W + sc′       (signal present), (2) 

where 
X = (x1, ... ,xn),   W = (w1, ... ,wn) (3) 

are p × n random matrices, and c = (1, ... ,1)′is a column vector of n units. It is assumed that wi, i = 1(1)n, are 
independent and normally distributed with common mean 0 and covariance matrix (positive definite) Q, i.e. 

wi ∼ Np(0,Q),       ∀i = 1(1)n. (4) 



 245 

Thus, for fixed n, the problem is to construct a test, which consists of testing the null hypothesis 
 H0: xi ∼ Np(0,Q),     ∀i = 1(1)n, (5) 

versus the alternative 
 H1: xi ∼ Np(s,Q),     ∀i = 1(1)n, (6) 

where the parameters Q and s are unknown. 
Generalized maximum likelihood ratio. One of the possible statistics for testing H0 versus H1 is 

given by the generalized maximum likelihood ratio (GMLR) 
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where θ=(s,Q), Θ0={(s,Q): s=0, Q∈Qp}, Θ1=Θ−Θ0, Θ = {(s,Q): s∈Rp, Q∈Qp}, Qp denotes the set of p × p 
positive definite matrices. Under H0, the joint likelihood for X based on (5) is 
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Under H1, the joint likelihood for X based on (6) is 
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It can be shown that 
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are the well-known maximum likelihood estimators of the unknown parameters Q and s under the hypotheses 
H0 and H1, respectively. After some algebra, we find that (10) is equivalent finally to the statis-
tic /n,y 1

1
2 TTT1
−′=  where T1=Xc, T2=XX′. It is known that (T1,T2) is a complete sufficient statistic for the 

parameter θ=(s,Q). Thus, the problem has been reduced to consideration of the sufficient statistic  (T1,T2). It 
can be shown that under H0, y is a Q-free statistic, which has the property that its distribution does not de-
pend on the actual covariance matrix Q. This is given by the following theorem. 

Theorem 1 (PDF of the GMLR statistic y). Under H1, the statistic y is subject to a noncentral beta-
distribution with the probability density function (PDF) 
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where 1F1 (a;b;x) is the confluent hypergeometric function [1], ( )sQs 1nq −′=  is a noncentrality parameter 
representing the generalized signal-to-noise ratio (GSNR). Under H0, when q=0,  (14) reduces to a standard 
beta-function density of the form 
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Proof. The proof is given by Nechval [4] and so it is omitted here.   � 
GMLR statistic. It is clear that the statistic y is equivalent to the statistic 
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Here the following theorem clearly holds. 
Theorem  2  (PDF of the GMLR statistic v). Under H1, the statistic v is subject to a noncentral F-

distribution with p and n-p degrees of freedom, the probability density function of which is 
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where q is a noncentrality parameter. Under H0, when q=0, (18) reduces to a standard F-distribution with p 
and n-p degrees of freedom, 
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Proof. The proof follows by applying Theorem 1 and being straightforward it is omitted.   � 
Adaptive test for target signal detection.  The test of H0 versus H1, based on the GMLR statistic v, 

is given by 
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and can be written in the form of a decision rule u(v) over {v: v∈(0,∞)}, 
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where h > 0 is a threshold of the test which is uniquely determined for a prescribed level of significance α so 
that 
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For fixed n, in terms of the probability density function (19), tables of the central F-distribution permit one to 
choose h to achieve the desired test size (false alarm probability PFA), 
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Furthermore, once h is chosen, tables of the noncentral F-distribution permit one to evaluate, in terms of the 
probability density function (18), the power (detection probability PD) of the test, 
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The probability of a miss is given by 
 .γ − 1 = β  (25) 

It follows from (23) that the GMLR test is invariant to intensity changes in the clutter background 
and achieves a fixed probability of a false alarm, i.e. the resulting analyses indicate that the test has the prop-
erty of a constant false alarm rate (CFAR). Also, no learning process is necessary in order to achieve the 
CFAR. Thus, operating in accordance to the local clutter situation, the test is adaptive. 

When the parameter θ=(s,Q)  is unknown, it is well known that no the uniformly most powerful 
(UMP) test exists for testing  H0 versus H1 [3]. However, some hypothesis testing problems that do not admit 
UMP decision rules (tests) nevertheless exhibit certain natural invariance properties [3, 5]. These properties 
suggest restricting attention to a limited class of decision rules, viz., the invariant decision rules. It is then 
sometimes possible to derive decision rules that are UMP within this limited class. In this sense, invariance is 
a concept of fundamental importance in hypothesis testing. The following theorem shows that the test (20) is 
UMPI for a natural group of transformations on the space of observations. 

Theorem 3. (UMPI test).  For testing the hypothesis H0 versus the alternative H1, the CFAR test 
given by (20) is uniformly most powerful invariant (UMPI). 

Proof. The proof is similar to that of Nechval [6, 7] and so it is omitted here.   �  

3. Target signal recognition 
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Suppose that the hypothesis H0: (clutter alone) is rejected. Then we deal with the target (signal in 
clutter) recognition problem using target identity information. Let a target detected belong to one of m 
classes and each class has equal a priori probability. We postulate that this target can be regarded as a “ran-
dom drawing” from one of the m classes but we do not know from which one. The problem is to classify a 
detected target as belonging to one of the m specified classes. When there is the possibility that a target does 
not belong to any of the m above classes, it is desirable to recognize this case.  

To adapt to a nonstationary background clutter, consider the situation in which a detected target sig-
nal s is related to the true target signal, say, of the jth class s(j) by   

s=ϑs(j)=ϑ(s1(j), …, sp(j))′,   j∈{1, …, m}, (26) 
where ϑ is a scalar amplitude parameter. It is assumed that the target signal vectors s(j), j=1(1)m, are known.  

The generalized maximum likelihood ratio statistics for this recognition problem are given by  
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The well-known maximum likelihood estimates (MLE’s) of the unknown covariance matrix Q un-
der the respective hypotheses, H0 and H1(j), are given by 
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After several algebraic manipulations, (27) reduces to the following clutter-adaptive test of detection 
of the jth target signal, j∈{1, …, m}: 
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h(j)>0 is a threshold of the test which is uniquely determined for a prescribed level of significance α(j) so 
that the probability of a false alarm is equal to α(j). 

Theorem 4  (PDF of the GMLR statistic v(j)). The probability density function of v(j) under hypo-
thesis H1(j) is given as follows: 
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for 0≤g≤1, and 
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for 0<v(j)<1. In (38) 1F1(a;b;x) is the confluent hypergeometric function, and q(j) is the generalized signal-to-
noise ratio (GSNR) defined by 
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Under hypothesis H0, no signal is present. Thus, if one sets q(j)=0 in (38), 
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Proof. The proof is similar to that of Theorem 2 and so it is omitted here.   � 
Finally, in terms of the above probability density functions in (36) and (40) the probability of false 

alarm is given by  
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and the probability of detection of the jth target signal is 
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Thus, if v(j)<h(j) then the jth target class is eliminated from further consideration. 
If  (m-1) target classes are so eliminated, then the remaining class (say, kth) is the one to which a de-

tected target being classified belongs. 
If all the target classes are eliminated from further consideration, we decide that a detected target be-

longs to the (m+1)th class whose distribution is unspecified.  
If the set of target classes not yet eliminated has more than one element, then we declare that a de-

tected target belongs to the class j* if 
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where D is the set of target classes not yet eliminated by the above test. 
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