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Abstract: In this paper, the statistical estimation of pulse transfer function of linear system is 
entered. The behaviour of an error estimate is studied. Conditions at which takes place 
asymptotic normality of finite dimensional distributions of the normalized error of an 
estimation of pulse transfer function are established. 

Let physically feasible time homogeneous linear system with pulse transfer function 
),(),( ∞−∞=∈ RH ττ  is set. It means, that real valued function H  satisfies with a condition 

,0,0)( <= ττH  and reaction of system to an allowable entrance signal Rttx ∈),(  looks like 
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One of research problems of the theory of linear systems is how to have an estimate or identification 
of function H if the obvious form of it is unknown, on supervision over reaction of system on some signal. 
In this paper, the statistical estimation of pulse transfer function of linear system is entered. The behaviour of 
an error estimate is studied. Conditions at which takes place asymptotic normality of finite dimensional 
distributions of the normalized error of an estimation of pulse transfer function are established. 

Let ),0(),),(( ∞∈∆∈= ∆∆ Rxxgg  is the real valued non-negative function family, satisfying 

following conditions: 
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someone 0≥β , ),(1 RLB β+∆ ∈  where ∫
∞

∞−

∆∆ ∈= RtdxxgetB itx ,)()( .                           (1) 

From (1b) and (1c), we get ),(2 RLg ∈∆  so )(2 RLB ∈∆ . It is supposed that condition (1) is 

existential during the article. 
Let )),(( RttXX ∈= ∆∆  is measurable central Gauss processes of stationary with real value, their 

spectral density is ∆g , correlation function is ∆B . Processes 0, >∆∆X  will serve as the processes 
revolting linear system. From condition (1b), that process ∆X  is mean-square continuous. 

Now let's consider random process ∫
∞

∆∆ ∈−=
0

,,)()()( RtdsstXsHtY being the response of system 

to input signal ∆X . 
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Let 0≥τ , as an estimate for )(τH , we consider a random variable 
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Its mathematical expectation looks like 
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clearly , that )()(€
, ττ HHE T ≠∆ , i.e. the estimation is displaced. 

Let )],(€)(€[)( ,,, τττ ∆∆∆ −= TTT HEHTZ                                             (4) 

Lemma 1. Let for someone 0≥β , )(1 RLB β+∆ ∈ , and )(2
21
22 RLLH ∩∈

+
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β
β . For all 0, 21 ≥ττ , we get the 

following equation: 

),,()()( 21,2,1, ττττ ∆∆∆ = TTT CZEZ                            (5) 

where 

∫ ∫
∞

∞−

∞

∞−

∆∆
+−

∆

−Φ



 += ;)()()()()()(2

),(

2121122
*

1
*)(2

1
*)(

2

21,

2211112 duduuguguuuHuHeuHe
c

C

T
uuiui

T

ττττπ

ττ
           (6) 

.,
2/

2/sin(
2

1)(
2

Rx
x
Tx

T
x ∈






=Φ

π
 where c is a constant from a condition (1d). 

The proof is curtailed. 
Let's put  
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Lemma 2. Let for someone 0≥β , )(1 RLB β+∆ ∈ , and 1) )(2
21
22 RLLH ∩∈

+
+
β
β , 2) exists such 1>p , that 

)(2 RLH p∈∗ , 3) function ∗H  is continuous almost everywhere on R . Then for all 0, 21 ≥ττ , we get: 

),()()(lim 212,1, ττττ CZZ TTT
=∆∆

∞→∆
∞→

.                               (8) 

The proof is similar to a lemma 4 in work [2] and consequently curtailed.  
Let )0),(( ≥ττZ  be a central Gauss process with the correlation function ),( 21 ττC . Mark 

ZZT ⇒∆,  means that, for ∞→∆∞→ ,T , the finite dimensional distributions of process )0),(( , ≥∆ ττTZ  

convergence to corresponding finite dimensional distribution of process Z . 
Lemma 3. For any natural number n ≥ 2  and anyone ),0[,,, 21 ∞∈nτττ  , then it is obtained as 
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where c is a constant from a condition (1d). 
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The sum of (9) is calculated on all disorder partition of ),,( 1 nDD  . nkDk ,,2,1, = , is a crossed 
set of two elements in different line, and { }ηξ ,=kD , if ξηEDk =cov . 

The proof: Using Fubini-Tonelli theorem, the expression (9) can be gained by equality (3) and 
Леонов-ширяева formula [4]. 

Theorem 1. Let for 0≥β , )(1 RLB β+∆ ∈ , and 1) )(2
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β ; 2) );()(1
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function *H  is continuous almost everywhere on R. Then for all 1),,0[,,, 21 ≥∞∈ nnτττ   
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By lemma 1,lemma 2 and lemma 3, we can prove the theorem using the way in the [2]. 

The proof: As processes ∆,TZ  have zero average, so the equality (10) is executed at 1=n . At 2=n  this 

equality is established in a lemma 2. Therefore further 3≥n .  

Following the accepted terminological word, say, that elements 
21

, kk DD  form the simple block if 

their association consists of two any lines of the table D . Accordingly, splitting nDD ,,1   of the table D  

we shall name simple if its elements can be broken on the pairs forming simple blocks. Clearly, that simple 
splitting can take place only for even n . The splitting nDD ,,1  which is not being simple, we shall name 

complex. 

Let's break the sum of the right part of equality (9) into the sum ),,( 1
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At first let’s prove (12а). From above known, number 3≥n  and even. If the pair 
21

, kk DD  elements of 
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splitting form the simple block, there will be such },,1{, npj ∈ , such that  
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where the sum undertakes on all disorder splitting set { , , }1 n  into not crossed two-element 
subsets },{,},,{ 121 nn kkkk − . As (see lemma 2)  
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From here, valid a lemma 3 and Leonov-Shirjaev formula (see also [4]) can yield equality (12а). 
Let's pass to the proof of the equality (12b). We know that each complex splitting can be presented 

as association of final number of indecomposable blocks. The minimal indecomposable block is the simple 
block. Hence at representation of complex splitting always there is the indecomposable block containing not 
less of three lines of the table D . We shall notice, that having rearranged in appropriate way lines which 
form the indecomposable block, it is possible to achieve that elements of this block connect the first line to 

the second, the second with the third, etc., and last line incorporates to the first. Accordingly the sum ∑ ''  

can be presented as 
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where d  represents the numbers of the indecomposable block of complex splitting, 2≥pm , and always 
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; kα  it is leveled 0 or kτ±  or kk ττ −+1 ， )(xgk  is )(xg∆  or 
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And always there are even two various such as these functions. As, on a condition (1b) and a condition 2) in 

the theorem, functions 
∆

∆gsup , *H are limited and )()( 21
* RLRLH ∩∈ , follows that (see [1])  
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Then equality (10) and (11) are established. 
The proof is similar to the proof of the theorem 1. 
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