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Abstract: In this paper, the statistical estimation of pulse transfer function of linear system is
entered. The behaviour of an error estimate is studied. Conditions at which takes place
asymptotic normality of finite dimensional distributions of the normalized error of an
estimation of pulse transfer function are established.

Let physically feasible time homogeneous linear system with pulse transfer function
H(r),r e R=(-o,00) is set. It means, that real valued function H satisfies with a condition
H(r) =0,7 <0, and reaction of system to an allowable entrance signal x(t),t € R looks like

0 t
y(t) = [H@x(t-7)dz = [H(t-s)x(s)ds.
0 —o0

One of research problems of the theory of linear systems is how to have an estimate or identification
of function H if the obvious form of it is unknown, on supervision over reaction of system on some signal.
In this paper, the statistical estimation of pulse transfer function of linear system is entered. The behaviour of
an error estimate is studied. Conditions at which takes place asymptotic normality of finite dimensional
distributions of the normalized error of an estimation of pulse transfer function are established.

Let g, =(9,(x),xeR),Ae(0,) is the real valued non-negative function family, satisfying
following conditions:

a) go(X) =g,(-x).,xeR;b)g, e Li(R);¢) gy €L, (R) and M =sup|g,[, <o j=12}<o,
A

where L, (R)is a space of the limited functions with norm g, || =sup|g, (x)| ;d)exists ¢ e (0,), for
xeR

im sup

. c
all xeR, lim g,(x)=—, moreover, foranyone ae (0,), |
A—0 2 A= _a<x<a

%(x)—i‘zo +¢) for
2

someone f>0,B, €Ly, 4(R), where B,(t) = Jeitng(x)dx, teR. 1)
From (1b) and (1c), we get g, € L,(R), so B, € L,(R). It is supposed that condition (1) is
existential during the article.
Let X, =(X,(t),t e R) is measurable central Gauss processes of stationary with real value, their
spectral density is g, , correlation function is B, . Processes X,,A >0 will serve as the processes
revolting linear system. From condition (1b), that process X, is mean-square continuous.

Now let's consider random process Y/, (t) = J H(s)X , (t—s)ds, t € R, being the response of system

0

to input signal X, .
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Let z >0, as an estimate for H(z), we consider a random variable
T
Hr (@)= (D)7 [ X, @V, (o)t )
0
Its mathematical expectation looks like

B, (1) =c j B, (r — S)H (s)ds. 3)
0

clearly , that EIr‘iT‘A (z) = H(z), i.e. the estimation is displaced.

Let Zq,(7) =vT[Hr s (7) - E7 L ()], C)
Lemma 1. Let for someone B>0,B, €Ly, 4(R), andH e L,,,5 NL,(R). Forall z;,7, >0, we get the
1428
following equation:
EZ; 5 (Tl)ZT,A (72) =Cra (71, 72), 5)
where
Cr a(m,72)
0r % AT L ) ) (6)
:?I I[el(rz_rl)ul H (Ul)‘ +e!(mr )y (u)H (UZ):|(DT (Uz —Up) g, (Uy) 94 (Up)duydus;
. 2
D(X) = _L (sin(Tx/2 , XeR. where Cisa constant from a condition (1d).
27T x/2
The proof is curtailed.
Let's put
< i — * 2 H *
Clrr) =5 | {e"’ Dl @) el (1 (u))z}du K i=122,7, 0. ™
T

Lemma 2. Let for someone S >0,B, €Ly,4(R), and 1) Hel,,,5 NL,(R), 2) exists such p >1, that
1+2p8

H* e L,p(R), 3) function H * is continuous almost everywhere on R . Then forall 7;,7, >0, we get:

T“_TO Zy A(11)Z1 A (73) =C(71,75) - (8)

A—o

The proof is similar to a lemma 4 in work [2] and consequently curtailed.
Let (Z(z),z>0) be a central Gauss process with the correlation function C(zy,7,). Mark

Z; , = Z means that, for T — o, A — oo, the finite dimensional distributions of process (Z; ,(7),7 > 0)

convergence to corresponding finite dimensional distribution of process Z .
Lemma 3. For any natural number N > 2 and anyone 71,7y, Ty €[0,0), then it is obtained as
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n

n T T
E [Zratd= > (@)™ [[[ [eovDyldt -, | ©
k=1 Dy,+,Dy 0 0

k=1

where Cis a constant from a condition (1d).

Xaty)  Yalti+71)
D= .XA(tZ) .YA (ty +73)

XAty Ya(t, +7y,)
The sum of (9) is calculated on all disorder partition of (Dy,---,D,).D,,k=12,---,n, is a crossed
set of two elements in different line, and D, ={£, 7}, if covD, = E&7.
The proof: Using Fubini-Tonelli theorem, the expression (9) can be gained by equality (3) and
Jleonos-mmpsiesa formula [4].

Theorem 1. Let for f>0,B, el 4(R), and 1) Hel,.,5 "L, (R); 2) H e L, (R)nL,(R); 3)
142/

function H™ is continuous almost everywhere on R. Then for all 7,,7,,---,7, €[0,00),n>1

Jim E[H Zra (rk)} - E[HZ(TK )} (10)
k=1 k=1

A—x

Zr =2 (12)
By lemma 1,lemma 2 and lemma 3, we can prove the theorem using the way in the [2].
The proof: As processes Z; , have zero average, so the equality (10) is executed at n=1. At n=2 this
equality is established in a lemma 2. Therefore further n>3.
Following the accepted terminological word, say, that elements D, , D,, form the simple block if

their association consists of two any lines of the table D . Accordingly, splitting D;,---,D, of the table D

we shall name simple if its elements can be broken on the pairs forming simple blocks. Clearly, that simple
splitting can take place only for even n. The splitting D,---, D, which is not being simple, we shall name

complex.

Let's break the sum of the right part of equality (9) into the sum Z :Z'T’A (z9,--+,7,) ON

simple splitting and the sum = 71,-++,T,) 0On complex splitting. So it is necessary to prove:
ple splitting and th L (@ n plex splitting. So it y top

that forany n>3,7,---,7, €[0,)

a) lim > =E[1j2(rk)]; b) lim > " =0. (12)
= A—o

A—o

At first let’s prove (12a). From above known, number n>3 and even. If the pair D, ,D,, elements of
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splitting form the simple block, there will be such j, p e{L,---,n}, such that

Dy, ={Xa(t)), X (tp)}; Dy, ={Xa (1)), Ya(ty +75)k
Dy, ={Ya(tj +75).Ya(t, +7,)} Dy, ={Xa(tp).Yaltj +7)}

Let DS’,DS’ express first case above, and Déf),Dg’ express second type. Clearly, that

T T n-1

o 2\-n/2 n (6] @ (2) (2)}1

= > (1) J-<——>I I.ll[coka] covD’ +covD covD® it -,
0 0 1=

{ku ko A{kng.kn} )
j—uneven

where the sum undertakes on all disorder splitting set {l,---,n} into not crossed two-element
subsets{k;, K5}, -+, {kn_1,Kn}. As (see lemma 2)

covD® covD{ +covD{? covD{?
] j+1 j j+1
=Byx,x, (t,, =t )Byy, (t,, =t +7x, =7k )+ By, (t,, —t, +7x, )+ Bx,y, (t, —t, , +7x,)

=L(ty, o)

n-1

TT
that Y= > H T2 ”L(tkj byt dty
{kiko} ko .k} J=L 00

J—unevn

=

)=Cra (TkIj 1Tkj+1)-

j+1

TT
1
and Tc_z-” Lty t,, )ty dty = EZr (74 )27 a (7k
00

From here, valid a lemma 3 and Leonov-Shirjaev formula (see also [4]) can yield equality (12a).

Let's pass to the proof of the equality (12b). We know that each complex splitting can be presented
as association of final number of indecomposable blocks. The minimal indecomposable block is the simple
block. Hence at representation of complex splitting always there is the indecomposable block containing not
less of three lines of the table D . We shall notice, that having rearranged in appropriate way lines which
form the indecomposable block, it is possible to achieve that elements of this block connect the first line to

the second, the second with the third, etc., and last line incorporates to the first. Accordingly the sum Z h

can be presented as
) d
IR | @)
p=1
where d represents the numbers of the indecomposable block of complex splitting, m,>2, and always

T T m
will be such p, that m, >3, and 1" integrals of a kind 1" :(Tcz)’m’2I<L>IH[cov D, Jdt; -dt,, .
0 0 j=t
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27M 2 w12
At my =2, sup| 1) < T H| <oo. (14)
T,A c

At m>3

T = [ [Ur (4 =x)U7 (% =X3)+-U (Xppy = X U (X = X0)

—00 —0 (15)
m .
T e 0200) -+ gm )by -+ dxyy

k=1

. Tx
sin—~
where UT(x):‘/ﬂiT x2 XeR; a itis leveled 0 or +7, or 7., -7, ©,(X) is g,(x) or

*, |2 * . .
‘H (x)‘ g (x), or H (x)g, (x) depending on concrete structure of the indecomposable block {D;,---,D}.

And always there are even two various such as these functions. As, on a condition (1b) and a condition 2) in

the theorem, functions supg, , H” are limited and H*eLl(R)mLZ(R), follows that (see [1])
A

TIim sup | IT(”‘A) |= 0.From here and equality (13), (14) can yield the equality (12b) . The theorem is proved.
=m0 A !

Theorem 2. Let for f>0,B,ely,;z(R), and 1) Hel,,; NL,(R), 2) exists p>2, that
142/

H e L,p(R), 3) function H “ is continuous almost everywhere on R, 4) T — o,A — o0, so that for

any m=>3
a(m) b(m)
Jos 5 ss3” .
(m-2)(p-2)
T %
where
1, if m>4 ext(m)—l, if m>4;
am =1 o g b(m) = 2
M= 1, if m=3,

Then equality (10) and (11) are established.
The proof is similar to the proof of the theorem 1.
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