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Abstract. The fluorescence and electron spin resonance (ESR) spectroscopy are very important 
experimental tools for studying complex biomolecular objects and systems. The analysis of 
spectroscopic experimental data is often conducted by means of fitting using an analytical or a 
simulation models. For the successful performance of the fitting operation, an adequate model 
should be selected and good initial estimations of its parameters should be made. We propose 
to use artificial neural networks (ANNs) to recognise the appropriate model and to produce 
initial estimations of model's parameters before fitting. 

1. Introduction 
The fluorescence and electron spin resonance (ESR) spectroscopy are very important experimental 

tools for studying the complex biomolecular objects and systems, including lipids, membranes, proteins, 
DNA, etc. These methods provide detailed information about structural and dynamic properties of these 
systems [2, 3]. 

The data analysis of these spectroscopic techniques is rather complex because of several reasons: 
there could be a number of unknown parameters; almost all dependencies between them and the processes 
occur are non-linear; and experimental data are distorted by noises and inaccuracies of a registration system. 
These facts impel to analyse experimental data via the multi-parametric optimisation approach (fitting). Gen-
eral scheme of the proposed method is the following: the model that describes studied processes is selected 
from all possible models, initial estimations for the model parameters are made, and the optimization algo-
rithm is starting to modify these parameters trying to achieve a coincidence between experimental and calcu-
lated data.  

For the successful performance of the fitting procedure, the selected model must be an adequate and 
the initial estimation for its parameters should be sufficiently good. Consequently, the tasks of model recog-
nition and initial estimations arise. The first task can be accomplished using a priori knowledge about the 
system. Unfortunately, it is not always possible, because this information may be the object of the research 
itself. To perform the second task, specific algorithms of data analysis can be implemented. However, these 
algorithms are strictly specialised, and cannot be applied in the general case. For example, the Laplace trans-
form allows to analyse multi-exponential fluorescence decay model but it cannot be used for stretched expo-
nential model. 

Therefore, in this paper we propose to use artificial neural networks (ANNs) [1] to solve the tasks of 
model selection and initial parameter estimation. Neural networks are widely used in a variety of disciplines, 
including the application of such techniques to the data acquisition and triggering of high energy physics 
detectors. Their robustness provides successful data analysis in the presence of statistical fluctuations and 
noise. 

2. General approach to ANN analysis 
Several procedures have to be performed for the successful application of the neural network analy-

sis. First, the dimensionality of the experimental data should be lowered by the mean of any approximation 
algorithm, for example – quantisation with the constant or logarithmic scale. From the variety of algorithms, 
the one, which saves most relevant information, should be selected. In addition, inputs of ANN should be 
scaled into similar ranges around the interval [0, 1].  

Let us consider the pre-processing stage in the case of fluorescence decay analysis. The initial fluo-
rescence decays are shown in the fig. 1a. Each experimental curve contains 1024 points – that is too much for 
an ANN. For the illustration, let the maximal number of ANN inputs be eight. The signals may be quantised 
into segments with constant (fig. 1b) or logarithmic (fig. 1c) length. In the second case, the signal was split 
into eight parts with the lengths of 8, 16, 32, 64, 128, 256, 512 points and the average value was taken for 
each part. 
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Fig. 1. The examples of mono-exponential (curves 1, 2) and two-exponential (curves 3, 4) fluorescence de-
cays (a) pre-processed via constant (b) and logarithmic (c) quantisation.  

3. Data analysis in time-resolved fluorescence spectroscopy 
Time-resolved fluorescence spectroscopy. Fluorescence spectroscopy is based on the emission of 

light from an electronically excited molecule [3]. After absorption of a photon the molecule turns into an 
excited electronic state. Excited molecule can return to its original energy state in several ways, including 
conversion of the energy into the heat (internal conversion), de-excitation by collision with another molecule 
(quenching), decomposition (photodissociation), or emission of light (fluorescence or phosphorescence). 
Fluorescence and phosphorescence differ in that fluorescence proceeds by emission from a singlet excited 
state to a singlet ground state (lifetime ~ nanoseconds) whereas phosphorescence proceeds by emission from 
a triplet state to a singlet ground state (lifetime ~ microseconds). 

The most sensitive part of the fluorescence spectroscopy is the time-resolved spectroscopy [3]. In 
the time-resolved fluorescence spectroscopy, molecules are pumped with energy using a very short pulse of 
light with the length from pico- to nanosecond. It makes possible to watch the time evolution of the excited 
molecular population by observing the emission of photons in real time. The emission of a photon is a statis-
tical process. Therefore, the time when an excided molecule remains in the excited state is also a statistical 
quantity. However, in an ensemble of identical molecules observed the decay statistics is well defined. In the 
simplest case, the number of molecules in the excited state decreases exponentially after exciting an ensem-
ble of identical molecules by a short pulse: 
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where n is the number of molecules in the excited state, τ – lifetime of fluorescence. The eq. 1 can be written 
in the terms of fluorescence intensity. In this case it leads to a mono-exponential decay for the system with a 
single-type non-interacting fluorescent molecules: 
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If the system contains N types of the non-interacting fluorescent molecules, the eq. 2 transforms into a multi-
exponential decay, presented in fig. 2a (F0 was normalised to 1) 

1,)exp()(
11

=τ−= ∑∑
==

N

i
i

N

I
ii atatF .                                                             (3) 

The interaction between fluorescent molecules in the form of quenching or non-radiative energy 
transfer leads to a significant complication of the decay law. In this case the fluorescence can be presented as 
a stretched exponent: 

)(
0)( tGcteeFtF −−= ,                                                                         (4) 

where c is a constant and G(t) is a geometry function which describes the distribution of fluorescent mole-
cules. There is no analytical expression for G(t) that would describe the behaviour of this system in the gen-
eral case – it was derived only for several homogeneous systems and specific situations (uniform distribu-
tions of molecules in 1, 2, 3 dimensions). 

The instrumental inaccuracy leads to additional complications in data analysis. The observed fluo-
rescence is in fact the convolution between theoretical fluorescence (eq. 2 – 4) and the impulse response 
function (IRF) h(t), which includes time lags of the light source pulse, photo-detector, optics and electronics. 
This gives us the real observed fluorescence (see fig. 2b) in the form 

)()()( tFthtf ⊗= .                                                                       (5) 
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Fig. 2. . Theoretical (a) and experimental (b) fluorescence decays. The parameters of decays are the follow-
ing: for the 1st curve τ=2.5 ns; for the 2nd curve τ=4 ns; for the 3d curve τ1=4 ns, τ2=1 ns;and for the 4th 

curve τ1=7 ns, τ2=0.5 ns. 

Selection of a model for fluorescence data. The step of model selection is of a crucial importance 
for the analysis of fluorescence decays. The wrong model leads to complete loss of useful information. 

In this section, we aim to the analysis of number of exponents in the multi-exponential decays. For 
example let ANN distinguish one-, two- and three-exponential decays. The three-layer perceptron was ap-
plied to recognise the model. Convoluted and distorted data, similar to those given in fig. 2b, were quantised 
within 32 bins of constant size. This information was given to 32 inputs of the three-layer perceptron with 16 
neurons in two hidden layers. Number of outputs was equal to the number of recognised model (three models 
in this example). The value of the output shows some sort of "probability" to have the corresponding model 
for the analysed data. 

The numerical experiment was performed to determine the accuracy of the approach. The single ex-
ponential model was determined correctly with the probability of 98%, for two-exponential model – 94% and 
for three-exponential model – 92%. Therefore, ANNs are able to perform the task of model recognition. The 
same technique can be used to distinguish between exponential and stretched-exponential decays.  

Fluorescence spectroscopy: initial estimation of parameters. Consider the task of parameter es-
timation on the same three-exponential model. A three-layer perceptron with 16 neurons in each hidden layer 
was used to extract information about the lifetimes of exponential components. The scheme is similar to what 
we had for model selection. Pre-processed decays are given to the input of ANN and estimated and scaled 
lifetimes are taken from the outputs, therefore the number of inputs corresponds to the number of estimated 
parameters. Because of the form of eq. 3 the order of summation does not play any role. This may lead to the 
uncertainty during the training of ANN – same inputs may give different outputs. To avoid it the output val-
ues were artificially ordered: it was predetermined that longest lifetime is taken from the first output. The 
average and the shortest lifetimes are taken from the second and from the third output correspondingly. 

The results of numerical experiments prove that ANN is able to perform the initial estimation of 
lifetimes in the case of multi-exponential decay. The probabilities of the estimation with 10% and 20% error 
were calculated. These probabilities are given in the table 1. In our numerical experiments we used simulated 
fluorescent decay. 

Table 1. The probabilities to get estimation within the admissible error region 

Admissible error 
interval 

Probability to get τ1 inside 
the admissible error region 

Probability to get τ2 inside 
the admissible error region 

Probability to get τ3 inside 
the admissible error region 

< 10% 99% 73% 70% 
< 20% 100% 97% 96% 

It can be seen, that the ANN was able to estimate parameters of the three-exponential decays with a 
high probability. It should be mentioned that this method can be applied for more complex models (eq. 4) and 
it works directly with convoluted data achieving a high stability to noises. 
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4. Data analysis in ESR spectroscopy 
ESR spectroscopy. ESR spectroscopy exploits the physical phenomenon of absorption of micro-

wave radiation by paramagnetic molecules or ions exposed to an external magnetic field. It is based on transi-
tions between energy levels produced by an external magnetic field on an unpaired electron. This transition is 
detected as ESR signal or spectrum. The splitting of electronic energy fields in a magnetic field is used to 
determine structures of samples containing unpaired electrons. 

In combination with labelling based on nitroxide spin probes, ESR spectroscopy is especially suit-
able for studying cell membranes. It can detect alterations caused by biologically active substances and indi-
cating pathological conditions, such as acute phase, cancer, etc [2]. In general, it is used for the determination 
of mobility of molecules and their parts, and can provide some information about the molecular geometry in 
the region of 5-25 Å.  

In the past, interpretation of ESR spectra was performed manually by measuring spectrum peaks 
characteristics and analyzing their relationships. However, the recorded ESR spectra provide much more 
reliable and biologically meaningful information when characterized through computer-aided spectrum simu-
lation [4]. 

Experimental data. The shape of an ESR spectrum is strongly dependent on the mobility and orien-
tation of a spin probe. The simplest types of spectra correspond to two opposite situations: probes are fixed in 
a crystal, having the same orientation, and fast non-restricted motions of probes. In these cases spectra can be 
presented by a three peak structure with Gaussian peaks for a fixed system and Lorentzian peaks for free one. 
Spectra that are much more complex are detected the situation when the motion of spin probe is slow or par-
tially restricted.  Each of three dimensional directions (x,y,z) gives its own spectrum, and the resulted one is 
called a powder spectrum (see fig. 3a). Most ESR spectrometers are designed to detect a slope of it (fig. 3b), 
and experimental data are always presented in the form of the spectrum derivatives. Derivative spectra gives 
spectra characteristics in a more visible form.  

Specific simulation-optimisation techniques should be implemented to analyse ESR spectra [4]. A 
lot of information can be extracted from the positions of peaks in a powder spectrum. Below the ANN analy-
sis via approximation is proposed. This method works with spectra themselves, not with their derivatives. 
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Fig. 3. ESR line shape for a powder spectrum (a) and its derivative (b)  

Neural network analysis. To analyse an ESR powder spectrum and to study its interfering peaks, it 
is possible to approximate a spectral region by a set of analytical functions featuring physical lines. For data 
analysis we offer to use a special class of ANN, called radial basis function (RBF) networks [1]. RBF net-
works are known due to their ability to build a good approximation of experimental data by the mean of 
weighted sum of Gaussian or Lorentzian functions. 

To keep approximation physically valid, a special criterion was included into the algorithm of ANN 
training. After each iteration, i.e. adding of a new neuron, the network was checked for the appearance of 
RBF with negative amplitude, and if one was found – the training stopped. 

The number of numerical experiments was conducted to define the possibilities of RBF approxima-
tion. The results for one of those are given in fig. 4a and table 2. RBF-network accurately determined the 
number of peaks in simulated data. Their locations were determined with the error varying from 0 to 7%. To 
decrease the error and fit peaks precisely standard methods of multi parameter optimization can be used. 

The experimental spectrum (fig. 4b) was recorded for Mycoplasma cells and lipids with incorporated 
12NS probe, bound to bovine serum albumin aqueous medium [5]. 
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Fig. 4. ANN approximation of the simulated ESR powder spectrum (a) and the experimental one (b). Thick 
gray line shows the initial ESR spectrum, thin black curves present the estimated locations and heights of 

peaks 

Table 2. Estimated locations of peaks for the simulated spectrum 

Number of a peak 1 2 3 4 5 
Real position (relative un.) 0.40 0.50 0.55 0.65 0.70 
Estimated position 0.40 0.51 0.59 0.64 0.71 
Relative error 0 % 2 % 7 % 2 % 1 % 

5. Conclusions 
The proposed approach was tested on the simulated fluorescence decays and ESR spectra. It showed 

rather good results in prediction of the model for fluorescence data. For the case of multi-exponential fluo-
rescence decay analysis, the mean probability to obtain the correct lifetime values within the error range of 
±10% was approximately 80%. It should be noted that the method is applicable in the case of non-
exponential decays. The method can work with convoluted data. The absence of the deconvolution procedure 
gives a significant increase to its stability to noises. 

The ANN with radial basis functions was successfully applied to approximate ESR powder spectra 
and to extract the positions of peaks. The method of RBF approximation is not restricted to Gaussian shape 
and may be applied to ESR spectra analysis in the case of a fast molecular motion (Lorentzian shape). The 
precision of the method can be increased by using of optimisation methods for the fine-tuning of peak pa-
rameters. 
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