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Abstract. The paper deals with the qualitative control and observation theory for linear 
systems with after-effect. The main problems under consideration are finite and infinite 
dimensional controllability and observability problems, and modal control. Some principle 
results in such a field are presented and open problems are formulated. 

1. History and available results 
The beginning of the research in the qualitative time-delay system control theory dates back to 

N.N.Krasovskii's (1963)-report at the Second IFAC Congress [1] where the problem of total quieting  (con-
trollability to zero function, complete controllability) was formulated for the simplest system with delay. As a 
whole, headed by academician N.N.Krasovskii Sverdlovsk's School of Control Theory, prepared such lead-
ing experts in the area as academicians A.B.Kurzhansky and Yu.S.Osipov, professors R.Gabasov and 
F.M.Kirillova etc.. This school possesses a world priority in statement of such basic qualitative control theory 
problems as complete controlability ( N.N.Krasovskii, A.B.Kurzhansky (1963, 1966)), stabilization under 
action of  integral feedback (N.N.Krasovskii, Yu.S.Osipov (1963, 1965)) etc. Simultaneously, F.M.Kirillova 
and S.V.Churakova (1967) and independently L.Weiss investigated the problem of relative(Euclidean, nR -)  
controllability. Since then different aspects of controllability and observability problems of systems with 
after-effect became the subject of investigations of many authors (see, for example, survey papers  [2,3]  and 
its references).  

Let us take a look at some basic stages of development of the qualitative control and observation 
theory  for systems with after-effect on an example of the simplest time-delay system (SDS): 

1( ) ( ) ( ) ( ), ( ) ( ), 0x t Ax t A x t h Bu t y t Cx t t= + − + = > ,                                             (1) 
The first question under consideration is the form of initial-value problem: 

Join continuous form (N.N. Krasovskii, A.D. Myshkis, J. Hale) 
( ) ( ), ([ , 0], )nx C h Rτ ϕ τ τ= ∈ − ;                                                                           (2) 

Initial jump form (N.V. Azbelev, A. Manitius and others) 
0(0) ( 0) , ( ) ( ), [ ,0)nx x R x hϕ τ ϕ τ τ= + = ∈ = ∈ − ; 

Our form of initial conditions 
 0 1 1(0) ( 0) , ( ) ( ), [ ,0)nx x R A x A hϕ τ ϕ τ τ= + = ∈ = ∈ −                                             (3) 

where ϕ  is a piecewise continuous in [ , 0]h−  vector function.  
System (1) is said to be: 

i) relatively 1t -controllable ( nR − controllable at time 1t ) where 1 0 0t t> =  if for any n − vector   

1
nx R∈  and initial data 0,ϕ ϕ  from (3) there exists a piecewise continuous r − vector function control 

( ) [ ]0 1, ,u u t t t t= ∈  such that the corresponding solution ( ) ( )0 0, , , ,x t x t t uϕ ϕ= , 0t t> , of System (1) satis-

fies the condition  ( ) 1x t x= ; 

ii) relatively zero- 1t -controllable ( nR − zero-controllable at time 1t ) if  1 0 nx R= ∈  in the previous defini-
tion; 
iii) pointwisely controllable in points 0 1, , , γβ β β  where 0 10 γβ β β= < < <  if there exists a time moment 

1 0t t γβ> +  such that for any initial data 0 ,ϕ ϕ  from (3) and for any vectors , 0, 1, ,n
jc R j γ∈ =  , there 

exists a piecewise continuous control ( )u u= ⋅  such that the corresponding solution of the system satisfies the 

condition ( )1 0 0, , , , ; 0, 1, ,j jx t t u c jβ ϕ ϕ γ− = =  ; 

iv) α -pointwisely controllable for 0α ≥  if it is pointwise controllable for arbitrary points 0 1, , , γβ β β  
such that 0 10 γβ β β α= < < < ≤ ; 
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v) poinwisely (multipoint) controllable if it is α − pointwisely controllable for all non-negative real number 
α . 

In contrast to Kalman’s systems ( 1 0A = ),  examples show that the first two controllability problems 
are not equivalent and it did not completely take into account in the first papers on controllability of time-
delay systems. For the problem of relative controllability an effective rank condition was obtained [see, for 
example [2,3]] in terms of the determining equation: 

System (1) is relatively 1t -controllable if and only if the following condition holds 

( ); 0,1, , 1; 0,1, , ,krank X jh k n j nα= − = =                                                 (4) 

where 1

0
lim t

hε

εα
→+

− =   
 and symbol [ ]d  denotes the entire part of number d , and ( ) , 0, 0, 1,kX t t k≥ =   

is a solution of the corresponding determining equation 
( ) ( ) ( )1 1 , 0, 0,1,2, ,k k kX t AX t A X t h t k+ = + − ≥ =                                        (5) 

with initial conditions of the form ( ) ( )0 00 , 0X B X t= =  for 0t ≠ . Later, the condition (4) was extended (see 
[2,3]) to systems with several delays and neutral type concentrated delay systems. But, it seems that the role 
of the determining equation in investigating properties of time-delay systems has not been completely studied 
yet and does not restrict to the role in  investigating the relative controllability problem. In our opinion, it 
deals with some structure properties of system under consideration, for example, the fundamental matrix 

( )F t  of System (1) solutions can be expressed in the form (B.Sh.Shklyar) 

( ) ( ) ( ) ( )1

0 0

, , 1 , 0,1,2 , ,
!

ip

i
i j

t jh
F t X jh t ph p h p

i

+∞

= =

−
= ∈ + =  ∑∑   

where ( )1 , 0, 0, 1,iX t t i≥ =    is a solution of the equation (4) with nB I=  that allows to obtain a determin-
ing equation series  representation (V.M.Marchenko) for solutions of System (1) 

0
0 0 0

( )( ) ( , , ) ( ) ( ) , 0
!

t jh k

k
k t jh

t jhx t v t X jh u d t
k
τϕ ϕ τ τ

−+∞

= − >

− −
= + >∑ ∑ ∫ .                           (6) 

where function ( , , )v ⋅ ⋅ ⋅  depends on initial data only. A direct way for obtaining such a representation, which 
makes more precise of the well-known representation of Bellman and Cook, is based on algebraic properties 
of the determining equation solutions and delay operator [2,3], in particular, we have 
Lemma 1. For the solution of the determining equation the following identity is valid 

1
0

( ) ( )
k

k j
k

j
A mA B m X jh

=

+ = ∑  for m R∈  and 0,1,k =                                           (7) 

Lemma 2 (generalized Hamilton-Cayley theorem). The solution ( )kX t  of the determining equation satisfies 
to the system characteristic equation 

1 0

( ) (( ) )
n i

n k i j n i k
i j

X h r X j hγ γ+ − +
= =

= − −∑∑          for 0,1,γ =   and 0,1,k =                        (8) 

where i jr  for 0,1, ,j i=   and 0,1, ,i n=   are the coefficients of the characteristic equation 

  1
0 0

det ( ) 0.
n i

h n i jh
n i j

i j
I A e A r eλ λλ λ− − −

= =

− − = =∑∑                                                (9) 

where Cλ ∈ , C  is the field of complex numbers. 
Lemma 3. For any natural numbers p  and q  the following rank  condition holds 

[ ( )krank X j h  for 0,1, ,j q=   and 0,1, , ]k p= = [ ( )krank X j h=  for 0,1, ,min{ , 1}j q n= −  and     
0,1, ,min{ , 1}].k p n= −                                                                                                                   (10) 

Results formulated allow to find a finite number of generators in linear span of the determining 
equation columns and, as a result, gives a way for describing the set of relatively controllable (or, precisely, 
relatively attainable) states of System (1). They also give a techniques, along with the regional frequency 
formal operator proof (R.Gabasov, F.M.Kirillova and S.V.Churakova)  for obtaining several proofs of rela-
tive controllability criterion (4) that are very similar to the well-known ones for Kalman’s controllability 
criterion. 
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Investigation of the problem of relative zero-controllability is essentially complicated because of 
possible degeneration (congruence) of solutions. It means that all the trajectories of system under considera-
tion may not completely fill out the space nR . Systems are said to be complete if they are not degenerate. In 
case of complete systems criteria of relative and zero-relative controllability are coincide. Such a result is 
true for general neutral type distributed delay systems of the second order ( 2n = ) but it is not true, in gener-
al, for retarded type distributed delay systems as well as for neutral type concentrated delays systems for 

3n = . It is shown [1,2] that System (1) is complete for 5n ≤  and may be degenerate for 10n = . The ques-
tion about the greatest dimension n , for which the properties of relative and zero-relative controllability are 
equivalent, is open. It has remained open the problem of finding effective zero-controllability criteria in such 
a completed form as criterion (4).  

Parametric criteria for the kinds iii) and iv) of pointwise controllability can be obtained (S.A. 
Minyuk) in a similar way as (4) with techniques and in terms of the determining equation solution. The prob-
lem of pointwise controllability was stated and solved by V.M. Marchenko. He proved that the property of 
α -pontwise controllability is completed, i.e. if  System (1) is α -pointwisely controllable for 

0
( 1)( 2)

2
n n hα α − −

= =  then it is α -pointwisely controllable for  0α α≥  and, as a result, is pointwisely  

controllable. And what is more, it was proved that System (1) is poinwisely controllable if and only if the 
following one-parameter system without delay       

( ) ( ) ( ) ( )1 , 0,x t A mA x t Bu t t= + + >                                                            (11) 
is controllable  in Kalman's sense of least for one real number m . This result gives the base for generalizing 
the majority of statements of Kalman’s mathematical system theory to time-delay systems. The results can be 
generalised to the neutral and retarded type systems with several delays.  

One of the most difficult problem of the qualitative control theory of systems with delay is the prob-
lem of complete controllability in sense of Krasovskii. A general scheme for testing every concrete time-
delay system from the point of view of its complete controllability is proposed by R.Gabasov and 
F.M.Kirillova, by A. Olbrot , and by G.P.Razmyslovich for numerous attempts. A parametric criterion for the 
complete controllability (Problem of Krasovskii) was obtained by V.M.Marchenko [2]: 

System (1) is completely controllable (at time 1 0t t s= +  where s nh> ) if and only if the following 
condition holds 

( )1 exp , , .nrank I A A h B n Cλ λ λ− − − = ∀ ∈                                                  (12) 
An important number of questions are realised in the field of feedback control. The main attention is 

paid here to the problem of modal control. Observe that the traditional statement of the problem of modal 
control given by W.M. Wonham in 1967 can not be used for time-delay systems because of infinite dimen-
sionality of such systems. The first problem of modal control of time-delay systems was considered in 1974 
by V.I. Bulatov, R.F. Naumovich and T.S. Kaluzhnaya as a partial modal control problem of control by arbi-
trary given finite part of the system spectrum. The method applied by the authors was a modified  method of 
Krasovskii and Osipov in investigating the problem of stabilization. The problem of modal control, in general 
statement, as a problem of control by the coefficients of the system characteristic equation was given in 1976 
by I.K.Asmykovich and V.M.Marchenko. Then infinite dimensional, according to the statement, problem of 
control by eigenvalues was reduced to a finite dimensional problem of control by the coefficients. Various 
kinds of regulators have been used intensively by several authors to solve the problem stabilization and mod-
al control for different types of systems with after-effect. Krasovskii and Osipov considered an integral type 
in [ ], 0h− of feedback to solve the problem of stabilization.. More general feedback 

0

( ) ( ) ( ), 0,u t dQ s x t s t
θ−

= + >∫  where 0θ ≥  is to be defined, was used by Marchenko for solving the general 

problem of modal control. In case where the kernel Q  is constant, except of a finite number of finite jumps, 
the feedback is reduced to the difference regulators 

( ) ( ) ( )0
0

, , 0,1, ,r n
j j

j
u t Q x t jh t t Q R j

θ

θ×

=

= − > ∈ =∑   .                                                (13) 

It seems that regulator (13) is more convenient in practical realizations. From this point of view, the follow-
ing type of regulator (13) 

0 1( ) ( ) ( )u t Q x t Q x t h= + −  
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is of great interest to study. Difference regulators (13) were introduced in 1976 by I.K. Asmykovich and 
V.M. Marchenko and independently A.S. Morse in their investigations of the problem of modal control. 

System (1) is said to be modally controllable by action of feedback (13) if for any real numbers 
1 , 0, 1, ,i jr j i=   and 1, ,i n=  there exists a regulator (13) such that the characteristic equation of System 

(1) closed by such a regulator has form 
1

1 0

0
n i

n n i jh
i j

i j
r e λλ λ − −

= =

+ =∑∑  . 

In a similar way the definitions of modal controllability of System (1) by action other types of regulators can 
be given. We state [2,3] that System (1) with single input ( 1r = )  is modally controllable by regulator (13) if 
and only if the following condition holds 

( ) ( ) ( ) 1
1 1det det , , , 0,nW m B A mA B A mA B const− = + + ≡ ≠   m R∀ ∈ .   (14) 

The problem of modal control by action of integral regulators is investigated (V.M.Marchenko) by using the 
integer function theory methods, in particular, by using the Wiener-Paley theorem, and it is proved that Sys-
tem (1) is modally controllable by integral regulators if and only if it is completely controllable in Krasovs-
kii’s sense. It is a generalization to systems with delay of the well-known theorem of W.M. Wonham. 
Several generalizations of the modal control problem to systems with several delays, neutral type systems 
and distributed delay systems are given in [2,3] for both complete and incomplete information case where an 
analogy of dynamic regulator of Pearson is proposed.   

Under the influence of abstract state approach in the general mathematical system theory there ap-
pear such approaches in the qualitative time delay control and observation theory. Actually, in the approach, 
a set ϕΩ ∋  of initial data for join continuous form ( ) 00ϕ ϕ=  or  ( )0 , nRϕ ϕ ∈ ×Ω   for initial jump form (3) 

is interpreted as a set  of initial states of the system. Then Â -controllability (functional) is considered as 
the existence of a control function for which the corresponding trajectory joins two arbitrary given points 
from Â . Similarly, complete observability is interpreted as the possibility to differ initial data by the output 
measurements. It proves to be that even Â  is isomorphic to Sobolev space ( ) [ ]( )1

2 ,0 , nW h R−  or 

( )2 2 [ , 0],n nM R L h R= × − , the problem of Â -controllability can be solved in exceptional cases only. That 
is why the property of controllability became the consideration in more weak sense, for example, as a prob-
lem of approximate controllability. Let us formulate some results [1,2]: 
i) System (1) is 2M -approximate controllable (S.A. Minyuk, S.N. Luakhovets) if, along with (12), the 

condition 1det 0A ≠  holds; 
ii) System (1) is completely observable (A.V. Metelskii, S.A. Minyuk, B.Sh. Shklyar) if the conditions 

1det 0A ≠  and 1 ,T T h T
nrank I A A e C nλλ − − − =   for all Cλ∀ ∈  are valid. 

It is not difficult to see that such notions of controllability and observability are not generalizations of Kal-
man's ones for Systems (1) with 1 0A = . It takes place because of state in the above sense is not minimal, in 
general. Historically, one of the first problems on functional controllability was the problem (E.A.Barbashin)  
of realization of motion along to a given trajectory. Another approach to the investigation of functional con-
trollability and observability properties was proposed by V.M. Marchenko on the base of "minimal state" 
notion. According to such an approach, at the investigation of concrete control and observation processes 
(studying the established processes) it is often necessary to consider a control problem after a certain time s  
of "idle" system work. In this situation from the point of view of control it makes no difference how the sys-
tem has behaved before. Thus, it is not necessary to distinguish those solutions which coincide for 0t t s≥ + . 
Let Ω  be an arbitrary set of initial data. Introduce the relation of equivalence sL  on Ω , having put 

0 0( , ) ( , )sLϕ ϕ ψ ψ  if and only if for any admissible control ( )u u= ⋅  the corresponding solutions of the system 

satisfy the condition ( ) ( )0 0 0 0, , , , , , , ,x t t u x t t vϕ ϕ ψ ψ=  for 0t t s≥ + . Then the set sL/Ω  of equivalent 
solution classes (factor-set) is interpreted as a set of admissible initial  s -states of the system and its image 
with respect to the system "input-output" mapping gives the set of s -solution of the system. At last, the re-
striction s tX  of the set of s -solutions on the interval 0 0[ , ]t t h t t+ − +  makes sense of the set of admissible 
s -states at the moment t . Hence by analogy with Kalman's definition, the problem of s -observability is 
considered [2,3] as the possibility of restoration (distinguishing), according to the output measurement, of the 
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corresponding initial s -states. Analogously, we define the property of s -controllability as the possibility to 
transfer the system trajectory from arbitrary initial state to arbitrary final one by choice of a control function. 
The case where s  is not fixed, we say weak state case and put s = ∞ , is of special interest because of the sets 

tX∞  are isomorphic and the weak system solutions corresponding to different weak initial data are also dif-
ferent, i.e. the system operator semi-group turns into its quotient group. Such a minimal state approach can be 
applied to the general non-stationary neutral type distributed delay systems and to more general concepts of 
( , )s t −  and ( , )nR s t−  -controllability and observability. But the best way to understanding the ( , )nR s t− - 
and ( , )s p − controllability problems is its game interpretation as a problem of pursuit of objects of the same 
dynamics type when the start t s∗ −  of motion for pursuivant and t p∗ −  for evasive are different, and the 
control v  of evasive is known in the whole interval [ , ]t p t∗ ∗−  of pursuit (we say with discrimination of 
evasive).  

For given 0,p s p≥ > , and 0s >  SDS (1) is said to be:  
(i) ( , )nR s p− -controllable at time 0t t s∗ = +   if for any initial data 0 ,ϕ ϕ  and 0 ,ψ ψ  and for any piecewise 
continuous r -vector function v  there exists a piecewise continuous control function ( )u u= ⋅  such that for 
the corresponding solutions ( )x t = 0( , , , , ),x t t s u t t sψ ψ∗ ∗− ≥ − , and 0( ) ( , , , , ),x t x t t p vψ ψ∗= − , 
t t p∗≥ − the following condition holds: 0 0( , , , , ) ( , , , , )x t t s u x t t p vϕ ϕ ψ ψ∗ ∗ ∗ ∗− = − ; 
(ii) ( , )s p − controllable at time * 0t t s= +  if for any initial data 0 ,ϕ ϕ  and 0 ,ψ ψ  and for any piecewise 
continuous r -vector function v  the exists a piecewise continuous control function ( )u u= ⋅  such that the 
corresponding solutions satisfy the condition * * 0 * * 0( , , , , ) ( , , , , )x t t t s u x t t t p vϕ ϕ ψ ψ+ − = + −  for 0t ≥ ; 
(iii) superstrongly controllable if it is ( , )nR s p−  - controllable for all real s  and p  such that 0s p≥ ≥  and 

0s > . Dual observability concepts can  be found in [2]. 
The following duality principle is true [2]: 

(i) ( , )nR s t− − controllability is dual to ( , )nR s t− − observability; 
(ii) ( , )s t − controllability is dual to linear ( , )s t − observability; 
(iii) approximate controllability is dual to ( , )s t − observability; 
This principle essentially places the role of Fredholm alternative in the corresponding problem of control. 
Notice that the introduced concept of controllability are direct generalizations of Kalman's ones and the fol-
lowing statements are valid: 
(i) 1( , )nR s p− -controllability implies 2( , )nR s p− - controllability for 0s >  and 2 1 0s p p≥ ≥ ≥ ; 

(ii) SDS (1) is superstrongly controllable if and only if 1, , , nrank B AB A B n−  =   and 

[ ]1,rank A B rankB= ;  

(iii) SDS (1) is ( , )nR s p−  - controllable for 0 , 0p s h s≤ ≤ ≤ >  if and only if it is superstrongly controlla-
ble. 

Similar results can be formulated for the problem of ( , )s t − controllability. 
Notice that property of ( , )nR s p−  - controllability at time s  of SDS (1) is equivalent for 0p =  to 

the relative controllability one. It is also equivalent for sp =  to the relative zero-controllability. The prob-
lem of ( , )s s − controllability at time 0t s+  is equivalent to the complete controllability in Krasovskii’s 
sense. Then we can state that SDS (1) is  ( , 0)nR s− - controllable at time  0t s+  if and only if condition (4) 
holds. Similarly, SDS (1) is ( , )s s − controllable at time 0t s+  with s nh>  if and only if  condition (12) is 
valid. Concluding, observe that ( , )s p −  and ( , )nR s p− -controllability are equivalent for 
0 , 0p s h s≤ ≤ ≤ > . 

One of the basic problems of the qualitative control theory is controllability in special classes of 
control functions [1,2]. Let us consider the following two classes. 

Dynamic Control (DC): 
.

1( ) ( ) ( ) ( ), 0,c c c cu t A u t A u t h B v t t= + − + >  
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where 1, ,c r r c r r c r qA R A R B R× × ×∈ ∈ ∈  and ch 0>  with initial conditions like (3) for ( )u ⋅ and with “new” 
control ( )v ⋅ . The case of 0cB = is of special interest. 

Simplex Control (SC): the function ( )u ⋅ is a piecewise continuous function which satisfies the condi-
tion ( )c cA u t b≤  for c m rA R ×∈ and c rb R∈ , and the inequality is for the corresponding entries. 

 
2. Controllability concept comparison 

Consider SDS (1) with nbB ∈=  and introduce abbreviations: 
“ssc” for superstrongly controllability;  
“mcdf” for modal controllability by action of difference feedback (13); 
“cc” for complete controllability in Krasovskii’s sense (at * 0 ,t t s s nh= + > ); 
“ccad” for complete controllability for all delay 0h ≥ ; 
“mcif” for modal controllability by action of integral feedback; 
“pcp” for pointwise controllability in points 00 γβ β α= < < ≤ ; 
“α -pc” for α -pointwise controllability; 
“pc” for pointwise controllability 
“rc” for relative controllability (for non-fixed time). 

The following implications are valid: 

“ssc” ⇒ ”mcdsf”⇒ ”ccad”⇒ ”cc”⇔ ”mcif”⇒ ”pc”⇔ ” ( 1)( 2)
2

n n h− −
− pc” 

                  ⇓                         ⇓  
               “α -pc”   ⇒           pcp”( 00 γβ β α= < < ≤ )⇒  
⇒ ”rc”( * 0 , ( 1)t t s s n h= + > − ). Similarly, we can compare the dual observability concepts. Examples 
show that the inverse implications are not true in general. 

3. Open problems 

1. Criteria for ( , )nR s p− −  controllability. 
2. Criteria for ( , )s p −  controllability. 
3. Find the minimal dimensional n  of the system for which −),( ss  and ( , 0)s − controllability are not 
equivalent (and the same for the ( , )nR s s− − controllability).  
4. Criteria for modal control of System (1) in the simplest linear time delay feedback class 

0 1( ) ( ) ( )u t Q x t Q x t h= + −  (and the same for stabilization).  
5. Complete controllability criteria for all delays (for small delays, at least for one delay, for fixed 1t ). 
6. DC and SC controllability criteria. 
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