©БНТУ

РАСЧЕТ ЭЛЕКТРОДИНАМИЧЕСКИХ УСИЛИЙ В ТРЕХФАЗНОЙ СИСТЕМЕ ЖЕСТКИХ ПРОВОДНИКОВ ПРОИЗВОЛЬНОГО ПРОСТРАНСТВЕННОГО РАСПОЛОЖЕНИЯ

А. А. СПАСКОВ, А. А. ШПАКОВСКИЙ, И. И. СЕРГЕЙ, Е. Г. ПОНОМАРЕНКО

In this paper an algorithm and computer program for calculating electrodynamic forces in the rigid conductors of arbitrary spatial location is considered

Ключевые слова: электродинамические усилия, жесткая ошиновка, математическое моделирование, компьютерная программа

Расчет электродинамических усилий (ЭДУ) в системе жестких проводников производится по известным выражениям, приведенным в литературе, а также в ГОСТ 30323-95 «Короткие замыкания в электроустановках: методы расчета электродинамического и термического действия токов короткого замыкания». В указанных источниках приводятся расчетные формулы для определения ЭДУ при расположении проводников в одной плоскости, а также по вершинам прямоугольного и равностороннего треугольника. В большинстве конструкций распределительных устройств с жесткой ошиновкой токоведущие части расположены именно так и проблем с расчетом ЭДУ не возникает. Если же из конструктивных соображений сборные шины располагаются по-другому, например, в вершинах произвольного треугольника, а также имеются отпайки или надставки, то информации, приведенной в ГОСТ, для расчета недостаточно. Поэтому на кафедре «Электрические станции» БНТУ была разработана математическая модель и компьютерная программа расчета ЭДУ в системе произвольно расположенных проводников с учетом отпаек и надставок.

Расчет ЭДУ производится по закону Био, Савара и Лапласа, записанном в векторнопараметрической форме в виде двух сомножителей

$$d\overline{F}_{kj} = I_{kj}\overline{G}_{kj} ,$$

где
$$I_{kj} = \frac{\mu_0 i_k i_j}{4\pi}$$
 — токовый коэффициент; $\overline{G}_{kj} = d\overline{s}_k \times \oint\limits_{l_j} \frac{\left[d\overline{s}_j \times \overline{R}_{jk}\right]}{\left|\overline{R}_{jk}\right|^3}$ — коэффициент контура; $d\overline{s}_k$ — длина

элемента k-ой шины; $d\overline{F}_{kj}$ — ЭДУ на элемент длины k-ой шины от j-ой (при $k \neq j$); \overline{R}_{jk} — вектор между элементами проводников с токами; i_k и i_j — мгновенные значения токов во взаимодействующих проводниках.

Токовый коэффициент определяется параметрами и характеристиками быстро протекающего электромагнитного переходного процесса в цепи короткого замыкания и не зависит от взаимного положения токоведущих частей. Коэффициент контура наоборот определяется взаимным положением шин в пространстве.

Алгоритм расчета ЭДУ был составлен с использованием закона Био, Савара и Лапласа в связи с тем, что у авторов имелся опыт решения подобной задачи для гибкой ошиновки распределительных устройств. Математическая модель расчета ЭДУ была реализована в компьютерной программе расчета электродинамической стойкости гибкой ошиновки, была опробована и хорошо себя зарекомендовала.

Для проверки разработанной компьютерной программы расчета ЭДУ в трехфазной системе жестких проводников был проведен расчет для шин, расположенных в горизонтальной плоскости. Результаты расчета сопоставлены с расчетом по аналитическим формулам из ГОСТ 30323-95. Разница результатов составила менее 1 %. С использованием компьютерной программы был проведен расчет ЭДУ для комплектного распределительного устройства со сборными шинами, расположенными в вершинах произвольного треугольника. По результатам расчета определены максимальные механические напряжения изгиба шин и изгибающие нагрузки на изоляторы при ударном токе короткого замыкания $i_{\rm v}=64\,$ кА.