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Abstract

Match is a critical operator in many well-known metadata intensive ap-

plications, such as schema/ontology integration, data warehouses, data

integration, e-commerce, etc. The match operator takes two graph-like

structures and produces a mapping between the nodes of the graphs that

correspond semantically to each other. This dissertation focuses only on

the task of development of the novel algorithms implementing the match

operator.

Many various solutions of matching have been proposed so far. This

work concentrates on a schema-based solution, namely a solution exploiting

only the schema information, and not considering instance information.

To ground the choice of the solution, this thesis provides a comprehensive

coverage of the schema-based approaches used in ontology matching as well

as their applications by reviewing state of the art in the field in a uniform

way. It also points out how the approach developed in the thesis fits in

with existing work.

The thesis proposes the matching algorithm implementing the so-called

semantic matching approach. This approach is based on two key ideas.

The first is that correspondences are calculated between entities of ontolo-

gies by computing logical relations (e.g., equivalence, subsumption, dis-

jointness), instead of computing coefficients rating match quality in the

[0 1] range, as it is the case in many other approaches. The second idea is



that the relations are determined by analyzing the meaning which is codi-

fied in the elements and the structures of ontologies. In particular, labels

at nodes, written in natural language, are automatically translated into

propositional formulas which explicitly codify the labels’ intended mean-

ing. This allows the translation of the matching problem into a proposi-

tional validity problem, which can then be efficiently resolved using sound

and complete state of the art propositional satisfiability deciders.

The basic, efficient and structure preserving semantic matching algo-

rithms have been designed and developed. The approach has been evalu-

ated on various real world test cases with encouraging results, thus, proving

empirically its benefits.

Keywords

Ontology matching, schema matching, ontology alignment, semantic het-

erogeneity, semantic matching, element level semantic matching, matching

evaluation
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Introduction

Motivating example

To motivate the matching problem, let us use two simple XML schemas

that are shown in Figure 1 and exemplify one of the possible situations

which arise, for example, when resolving a schema integration task.

Figure 1: Two XML schemas

Suppose an e-commerce company needs to finalize a corporate acquisi-

tion of another company. To complete the acquisition we have to integrate

databases of the two companies. The documents of both companies are

stored according to XML schemas O1 and O2, respectively. Numbers in

boxes are the unique identifiers of the XML elements. A first step in in-

tegrating the schemas is to identify candidates to be merged or to have

xxi



taxonomic relationships under an integrated schema. This step refers to

a process of schema matching. For example, the elements with labels Of-

fice Products in O1 and in O2 are the candidates to be merged, while the

element with label Digital Cameras in O2 should be subsumed by the el-

ement with label Photo and Cameras in O1. Once the correspondences

between two schemas have been determined, the next step has to gener-

ate query expressions that automatically translate data instances of these

schemas under an integrated schema.

Structure of the thesis

The thesis is organized in five parts.

Part one is dedicated to the definition of the ontology matching problem.

It technically defines the ontology matching process and its result: the

alignment.

Part two provides a comprehensive coverage of the schema-based ap-

proaches used for ontology matching. Chapter 2 defines a classification

of the matching approaches, presents some basic methods and matching

strategies used for designing an ontology matching system. Chapter 3

presents a large number of state of the art schema-based matching sys-

tems, discussed in light of the classifications, methods and strategies of the

previous chapter. It also points out how the approach further developed

in this thesis fits in with existing work.

Part three is devoted to the semantic matching algorithms proposed in

this thesis. Chapter 4 introduces semantic matching approach. It also

discusses in detail the main macro steps realizing the semantic match-

ing algorithm. Chapter 5 discusses efficiency improvements to the seman-

tic matching algorithm. Chapter 6 presents an extension of the semantic

matching approach to deal with the complex structures.

xxii



Part four is devoted to the test beds generation and evaluation of on-

tology matching and semantic matching in particular. Chapter 7 presents

a methods for the large scale dataset generation. Chapter 8 reports the

results of the conducted experiments.

Finally, part five concludes. Chapter 9 summarizes the work done in

the thesis.

xxiii





Part I

The matching problem





Chapter 1

The matching problem

There have been different formalizations of matching and its result, see,

for example, [13, 81, 74, 15, 136]. We provide here a general definition,

following the work in [129].

The matching operation determines the alignment A′ for a pair of on-

tologies O1 and O2. There are some other parameters which can extend

the definition of the matching process, namely: (i) the use of an input

alignment A, which is to be completed by the process; (ii) the matching

parameters, p, e.g., weights, thresholds; and (iii) external resources used

by the matching process, r, e.g., common knowledge and domain specific

thesauri. Technically, this process can be defined as follows.

The matching process can be viewed as a function f which, from a pair of

ontologies O1 and O2 to match, an input alignment A, a set of parameters

p and a set of oracles and resources r, returns a new alignment A′ between

these ontologies:

A′ = f(O1, O2, A, p, r)

The multiple matching process can be viewed as a function f which, from

3



CHAPTER 1. THE MATCHING PROBLEM

a set of ontologies to match {O1, . . . On}, an input multi-alignment A, a

set of parameters p and a set of oracles and resources r, returns a new

multi-alignment A′ between these ontologies:

A′ = f(O1, . . . On, A, p, r)

The matching process is the main subject of this thesis. However, before

discussing its internals, let us first consider what it provides: the alignment.

Alignments express the correspondences between entities belonging to

different ontologies. We focus here on matching between two ontologies.

In case of multiple matching, the definitions can be straightforwardly ex-

tended by using n-ary correspondences. A correspondence must express

the two corresponding entities and the relation that is supposed to hold

between them. We provide the definition of the alignment following the

work in [42, 15].

Given two ontologies, a correspondence is a 5-tuple:

〈id, e1, e2, n, R〉,

such that

• id is a unique identifier of the given correspondence;

• e1 and e2 are the entities (e.g., tables, XML elements, properties,

classes) of the first and the second ontology, respectively;

• n is a confidence measure (typically in the [0 1] range) holding for the

correspondence between the entities e1 and e2;

• R is a relation (e.g., equivalence (=), more general (⊒), disjointness

(⊥), overlapping (⊓)) holding between the entities e1 and e2.

4



CHAPTER 1. THE MATCHING PROBLEM

The correspondence 〈id, e1, e2, n, R〉 asserts that the relation R holds

between the ontology entities e1 and e2 with confidence n. The usage of

confidences is that the higher the degree, the most likely the relation holds.

Given two ontologies O1 and O2, an alignment is made up of a set of

correspondences between pairs of entities belonging to O1 and O2, respec-

tively.

For example, in Figure 1 (p.xxi), according to some matching algorithm

based on linguistic and structure analysis, the confidence measure (for

the fact that the equivalence relation holds) between entities with labels

Photo and Cameras in O1 and Cameras and Photo in O2 could be 0.67.

Suppose that this matching algorithm uses a threshold of 0.55 for deter-

mining the resulting alignment, i.e., the algorithm considers all the pairs of

entities with a confidence measure higher than 0.55 as correct correspon-

dences. Thus, our hypothetical matching algorithm should return to the

user the following correspondence:

〈id5,4, Photo and Cameras, Cameras and Photo, 0.67, =〉.

However, the relation between the same pair of entities, according to

another matching algorithm which is able to determine that both entities

mean the same thing, could be exactly the equivalence relation (without

computing the confidence measure). Thus, returning to the user

〈id5,4, Photo and Cameras, Cameras and Photo, n/a, =〉.

By analogy with mathematical functions, it is useful to define some

properties of the alignments. These apply when the only considered rela-

tion is equality (=). One can ask for a total alignment with regard to one

ontology, i.e., all the entities of one ontology must be successfully mapped

to the other one. This property is purposeful whenever thoroughly tran-

scribing knowledge from one ontology to another is the goal: there is no

entity that cannot be translated.

5



CHAPTER 1. THE MATCHING PROBLEM

One can also require the mapping to be injective with regard to one

ontology, i.e., all the entities of the other ontology is part of at most one

correspondence. Injectivity is useful in ensuring that entities that are dis-

tinct in one ontology remain distinct in the other one. In particular, this

contributes to the reversebility of alignments.

Usual mathematical properties apply to these alignments. In particular,

a total alignment from O1 to O2 is a surjective alignment from O2 to O1.

A total alignment from both O1 and O2 which is injective from one of

them is a bijection. In mathematical English, an injective function is said

to be one-to-one and a surjective function to be onto. Due to the wide

use among matching practitioners of the term one-to-one for a bijective,

i.e., both injective and surjective, alignment, we will only use one-to-one

for bijective.

In conceptual models and databases, the terms multiplicity or cardinal-

ity denote the constraints on a relation. Usual notations are 1:1, 1:m, n:1

or n:m. If we consider only total and injective property, denoted as 1 for

injective and total, ? for injective, + for total and * for none, and the two

possible orientations of the alignments, from O1 to O2 and from O2 to O1,

the multiplicities become: ?:?, ?:1, 1:?, 1:1, ?:+, +:?, 1:+, +:1, +:+, ?:*,

*:?, 1:*, *:1, +:*, *:+, *:* [41].

6
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Chapter 2

Ontology matching

techniques

Having defined what the matching problem is, we overview some clas-

sifications of the techniques that can be used for solving this problem.

In particular, surveys on the topic through the recent years have been

provided in [124, 135, 74]; while the major contributions of the previous

decades are presented in [8, 78, 130, 75, 118]. The work presented in [74]

focuses on current state of the art in ontology matching. Authors review

recent approaches, techniques and tools. The survey of [135] concentrates

on approaches to ontology-based information integration and discusses gen-

eral matching approaches that are used in information integration systems.

However, none of the above mentioned works provide a comparative review

of the existing ontology matching techniques and systems. On the contrary,

the survey of [124] is devoted to a classification of database schema match-

ing approaches and a comparative review of matching systems. Notice that

these three works address the matching problem from different perspectives

(artificial intelligence, information systems, databases) and analyze disjoint

sets of systems. [129] have attempted at considering the above mentioned

works together, focusing on schema-based matching methods, and aiming

to provide a common conceptual basis for their analysis. In this chapter we

9



2.1. A CLASSIFICATION OF
MATCHING TECHNIQUES

CHAPTER 2. ONTOLOGY MATCHING
TECHNIQUES

rely on [129] while discussing the classification of the matching approaches.

2.1 A classification of

matching techniques

In this section we discuss only schema-based elementary matchers. There-

fore, only schema level information is considered, not instance data1.

For classifying elementary schema-based matching techniques, two syn-

thetic classifications are presented in [129](see Figure 2.1). These two

classifications are presented as two trees sharing their leaves. The leaves

represent classes of elementary matching techniques and their concrete ex-

amples. Two synthetic classifications are:

• Granularity/Input Interpretation classification is based on (i) granu-

larity of match, i.e., element- or structure-level, and then (ii) on how

the techniques generally interpret the input information;

• Kind of Input classification is based on the kind of input which is used

by elementary matching techniques.

The overall classification of Figure 2.1 can be read both in descending

(focusing on how the techniques interpret the input information) and as-

cending (focusing on the kind of manipulated objects) manner in order to

reach the Basic Techniques layer. Let us discuss in turn Granularity/Input

Interpretation, Basic Techniques, Kind of Input layers together with sup-

porting arguments for the categories/classes introduced at each layer.

Elementary matchers are distinguished by the Granularity/Input inter-

pretation layer according to the following classification criteria:

• Element-level vs structure-level. Element-level matching techniques

compute correspondences by analyzing entities in isolation, ignoring
1Prominent solutions of instance-based ontology matching can be found in [33, 35].
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Figure 2.1: A retained classification of elementary schema-based matching techniques
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their relations with other entities. Structure-level techniques com-

pute correspondences by analyzing how entities appear together in a

structure. This criterion is the same as first introduced in [124].

• Syntactic vs external vs semantic. The key characteristic of the syn-

tactic techniques is that they interpret the input as a function of its

sole structure following some clearly stated algorithm. External are

the techniques exploiting auxiliary (external) resources of a domain

and common knowledge in order to interpret the input. These re-

sources might be human input or some thesaurus expressing the rela-

tionships between terms. The key characteristic of the semantic tech-

niques is that they use some formal semantics (e.g., model-theoretic

semantics) to interpret the input and justify their results. In case

of a semantic based matching system, exact algorithms are complete

(i.e., they guarantee a discovery of all the possible alignments) while

approximate algorithms tend to be incomplete.

Distinctions between classes of elementary matching techniques in the

Basic Techniques layer of the classification are motivated by the way a

matching technique interprets the input information in each concrete case.

In particular, a label can be interpreted as a string (a sequence of letters

from an alphabet) or as a word or a phrase in some natural language, a

hierarchy can be considered as a graph (a set of nodes related by edges) or

a taxonomy (a set of concepts having a set-theoretic interpretation orga-

nized by a relation which preserves inclusion). Thus, the following classes

of elementary ontology matching techniques are introduced at the element-

level: string-based, language-based, based on linguistic resources, constraint-

based, alignment reuse, and based on upper level and domain specific for-

mal ontologies. At the structure-level we distinguish between: graph-based,

taxonomy-based, based on repositories of structures, and model-based tech-
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niques.

The Kind of Input layer classification is concerned with the type of input

considered by a particular technique:

• The first level is categorized depending on which kind of data the

algorithms work on: strings (terminological), structure (structural)

or models (semantics). The two first ones are found in the ontology

descriptions, the last one requires some semantic interpretation of the

ontology and usually uses some semantically compliant reasoner to

deduce the correspondences.

• The second level of this classification decomposes further these cate-

gories if necessary: terminological methods can be string-based (con-

sidering the terms as sequences of characters) or based on the interpre-

tation of these terms as linguistic objects (linguistic). The structural

methods category is split into two types of methods: those which

consider the internal structure of entities (e.g., attributes and their

types) and those which consider the relation of entities with other

entities (relational).

The order follows that of the Granularity/Input Interpretation classifi-

cation and these techniques are divided in two sections concerning element-

level techniques (§2.1.1) and structure-level techniques (§2.1.2).

2.1.1 Element-level techniques

String-based techniques

These techniques are often used in order to match names and name de-

scriptions of ontology entities. They consider strings as sequences of letters

in an alphabet. They are typically based on the following intuition: the

more similar the strings, the more likely they denote the same concepts.

13
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A comparison of different string matching techniques, from distance like

functions to token-based distance functions can be found in [26]. Usually,

distance functions map a pair of strings to a real number, where a smaller

value of the real number indicates a greater similarity between the strings.

Some examples of string-based techniques which are extensively used in

matching systems are prefix, suffix, edit distance, and n-gram (see Section

4.4 for more detail).

Language-based techniques

These techniques consider names as words in some natural language (e.g.,

English). They are based on Natural Language Processing (NLP) tech-

niques exploiting morphological properties of the input words. The promi-

nent examples of them are tokenization, lemmatization and elimination.

Usually, the above mentioned techniques are applied to names of entities

before running string-based or lexicon-based techniques in order to im-

prove their results. However, we consider these language-based techniques

as a separate class of matching techniques, since they can be naturally ex-

tended, for example, in a distance computation (by comparing the resulting

strings or sets of strings).

Constraint-based techniques

These are algorithms which deal with the internal constraints being applied

to the definitions of entities, such as types, cardinality of attributes, and

keys. We omit here a discussion of matching keys as these techniques

appear in our classification without changes with respect to the original

publication [124].
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Linguistic resources

Linguistic resources, such as common knowledge or domain specific the-

sauri are used in order to match words (in this case names of ontology

entities are considered as words of a natural language) based on linguistic

relations between them (e.g., synonyms, hyponyms).

Alignment reuse

These techniques represent an alternative way of exploiting external re-

sources, which record alignments of previously matched ontologies. For

instance, when we need to match ontology o′ and o′′, given the alignments

between o and o′, and between o and o′′ from the external resource, storing

previous match operations results. The alignment reuse is motivated by

the intuition that many ontologies to be matched are similar to already

matched ontologies, especially if they are describing the same applica-

tion domain. These techniques are particularly promising when dealing

with large ontologies consisting of hundreds and thousands of entities. In

these cases, first, large match problems are decomposed into smaller sub-

problems, thus generating a set of ontology fragments matching problems.

Then, reuse of previous match results can be more effectively applied at

the level of ontology fragments rather than at the level of entire ontologies.

The approach was first introduced in [124] and later was implemented as

two matchers, i.e., (i) reuse alignments of entire ontologies, or (ii) their

fragments [31, 5, 125].

Upper level and domain specific formal ontologies

These techniques use as external sources of knowledge upper level and

domain specific formal ontologies. Examples of the upper level ontologies

are the Suggested Upper Merged Ontology (SUMO) [107] and Descriptive
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Ontology for Linguistic and Cognitive Engineering (DOLCE) [50]. The

key characteristic of these ontologies is that they are logic-based systems,

and therefore, matching techniques exploiting them can be based on the

analysis of interpretations. Thus, these are semantic techniques. For the

moment, we are not aware of any matching systems which use these kind of

techniques. However, it is quite reasonable to assume that this will happen

in the near future. In fact, for example, the DOLCE ontology aims at

providing a formal specification (axiomatic theory) for the top level part of

WordNet. Therefore, systems exploiting WordNet now in their matching

process (and aware of some of its limitations [51]) might also consider using

DOLCE as a potential extension.

Domain specific formal ontologies can also be used as external sources

of background knowledge. Such ontologies are focusing on a particular

domain and use terms in a sense that is relevant only to this domain and

which is not related to similar concepts in other domains. For example,

in the anatomy domain, an ontology such as The Foundational Model of

Anatomy (FMA)2 can be used as the context for the other medical ontolo-

gies to be matched (as long as it is known that the reference ontology covers

the ontologies to be matched). This can be particularly useful for providing

the missing structure when matching poorly structured resources [1].

2.1.2 Structure-level techniques

Graph-based techniques

These are graph algorithms which consider the input as labeled graphs.

The applications (e.g., database schemas, or ontologies) are viewed as

graph-like structures containing terms and their inter-relationships. Find-

ing the correspondences between elements of such graphs corresponds to

2http://sig.biostr.washington.edu/projects/fm/AboutFM.html
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solving a form of the graph homomorphism problem [52]. Usually, the

similarity comparison between a pair of nodes from the two ontologies is

based on the analysis of their positions within the graphs. The intuition

behind is that, if two nodes from two ontologies are similar, their neigh-

bors might also be somehow similar. Below, we present some particular

matchers representing this intuition.

Taxonomy-based techniques

These are also graph algorithms which consider only the specialization

relation. The intuition behind taxonomic techniques is that is-a links

connect terms that are already similar (being a subset or superset of each

other), therefore their neighbors may be also somehow similar.

Repository of structures

Repositories of structures store ontologies and their fragments together

with pairwise similarity measure, e.g., coefficients in the [0 1] range be-

tween them. Notice that unlike the alignment reuse, repository of struc-

tures stores only similarities between ontologies, not alignments. In the

following, to simplify the presentation, we call ontologies or their frag-

ments as structures. When new structures are to be matched, they are first

checked for similarity against the structures which are already available in

the repository. The goal is to identify structures which are sufficiently sim-

ilar to be worth matching in more detail, or reusing already existing align-

ments, thus, avoiding the match operation over the dissimilar structures.

Obviously, the determination of similarity between structures should be

computationally cheaper than matching them in full detail. The approach

of [125], to matching two structures proposes to use some metadata de-

scribing these structures, such as structure name, root name, number of

nodes, maximal path length, etc. These indicators are then analyzed and
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are aggregated into a single coefficient, which estimates similarity between

them. For example, two ontologies may be found as an appropriate match

if they both have the same number of nodes.

Model-based

These are algorithms which handle the input based on its semantic inter-

pretation (e.g., model-theoretic semantics). Thus, they are well grounded

deductive methods. Examples are propositional satisfiability (SAT) and

description logics (DL) reasoning techniques.

2.2 Summary

There is a variety of techniques that can be used for ontology matching.

The classification discussed in this chapter provides a common conceptual

basis, and, hence, can be used for comparing (analytically) different exist-

ing ontology matching systems as well as for designing a new one, taking

advantages of state of the art solutions. Also, classifications of match-

ing methods provide some guidelines which help in identifying families of

matching techniques.

This chapter provided two such classifications based on granularity and

input interpretation on one side and the kind of input on the other side.
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Chapter 3

Overview of

matching systems

This chapter is devoted to an overview of existing matching systems which

have emerged during the last decade. There have already been done some

comparisons of a number of matching systems, in particular in [119, 124,

30, 74, 109, 34, 129]. Our purpose here is not to compare them in full detail,

although we give some comparisons, but rather to show their variety, in

order to demonstrate in how many different ways the methods presented

in the previous chapter have been practically exploited. We present the

matching systems in light of the classifications of Chapter 2. We also point

to concrete basic matchers and matching strategies used in the considered

systems.

In order to facilitate the presentation we follow two rules. First, the

year of the system appearance is considered. Then, if there are some evo-

lutions of the system or very similar systems, these are discussed close to

each other. Since the main focus of this thesis is on schema-based match-

ing, instance-based systems (e.g., LSD [33], GLUE [35], Automatch [12],

sPLMap [108]) as well as meta-matching systems (APFEL [38], eTuner

[127]) were excluded from the consideration, see [44] for an overview. We

have also excluded from consideration the systems which assume that align-
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ments have already been established, and use this assumption as a prereq-

uisite of running the actual system. These approaches include such in-

formation integration systems as: Tsimmis [25], Observer [97], SIMS [2],

Kraft [123], Picsel [66], DWQ [20], AutoMed [19], and InfoMix [82].

The structure of this chapter is as follows. We first describe systems

which focus on schema-level information (§3.1). Then, we present systems

which exploit both schema-level and instance-level information (§3.2).

3.1 Schema-based systems

Schema-based systems, according to the classification of Chapter 2, are

those which rely mostly on schema-level input information for performing

ontology matching.

3.1.1 Hovy (University of Southern California)

[72] describes a number of heuristics used to match large-scale ontologies,

such as Sensus and Mikrokosmos, in order to combine them in a single ref-

erence ontology. In particular, were used three types of matchers based on

(i) concept names, (ii) concept definitions, and (iii) taxonomy structure.

For example, the name matcher splits composite-word names into separate

words and then compares substrings in order to produce a similarity score.

Specifically, the name matcher score is computed as the sum of the square

of the number of letters matched, plus 20 points if words are exactly equal

or 10 points if end of match coincides. For instance, using this strategy,

the comparison between Free World and World results in 35 points score,

while the comparison between cuisine and vine results in 19 points score.

The definition matcher compares the English definitions of two concepts.

Here, both definitions are first separated into individual words. Then, the

number and the ratio of shared words in two definitions is computed in
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order determine the similarity between them. Finally, results of all the

matchers are combined based on experimentally obtained formula. The

combined scores between concepts from two ontologies are sorted in de-

scending order and are presented to the user for establishing a cutoff value

as well as for approving or discarding operations, results of which are saved

for later reuse.

3.1.2 TransScm (Tel Aviv University)

TransScm [101] provides data translation and conversion mechanisms be-

tween input schemas based on schema matching. First, by using rules, the

alignment is produced in a semi-automatic way. Then, this alignment is

used to translate data instances of the source schema to instances of the

target schema. Input schemas are internally encoded as labeled graphs,

where some of the nodes may be ordered. Nodes of the graph represent

schema elements, while edges stand for the relations between schema ele-

ments or their components. Matching is performed between nodes of the

graphs top-down and in one-to-one fashion. Matchers are viewed as rules.

For example, (according to the identical rule) two nodes match if their

labels are found to be synonyms based on the built-in thesaurus; see for

a list of the available rules [137]. The system combines rules sequentially

based on their priorities. It tries to find for the source node a unique best

matching target node, or determine a mismatch. In case (i) there are a

number of matching candidates, among which the system cannot choose

the best one, or (ii) if the system cannot match or mismatch a source node

to a target node with the given set of rules, user involvement is required. In

particular, users with the help of a graphic user interface can add, disable

or modify rules to obtain the desired matching result. Then, instances of

the source schema are translated to instances of the target schema accord-

ing to the match rules. For the example of the identical rule, translation
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includes copying the source node components.

3.1.3 DIKE (Università di Reggio Calabria,

Università di Calabria)

DIKE (Database Intensional Knowledge Extractor) is a system supporting

the semi-automatic construction of cooperative information systems (CISs)

from heterogeneous databases [117, 115, 116, 114]. It takes as input a set

of databases belonging to the CIS. It builds a kind of mediated schema

(called data repository or global structured dictionary) in order to pro-

vide a user-friendly integrated access to the available data sources. DIKE

focuses on entity-relationship schemas. The matching step is called the

extraction of inter-schema knowledge. It is performed in a semi-automatic

way. Some examples of inter-schema properties that DIKE can find are

terminological properties, such as synonyms, homonyms among objects,

namely entities and relationships, or type conflicts, e.g., similarities be-

tween different types of objects, such as entities, attributes, relationships;

structural properties, such as object inclusion; subschema similarities, such

as similarities between schema fragments. With each kind of property is

associated its plausibility coefficient in the [0 1] range. The properties

with a lower plausibility coefficient than a dynamically derived threshold

are discarded, whereas others are accepted. DIKE works by computing

sequentially the above mentioned properties. For example, synonyms and

homonyms are determined based on information from external resources,

such as WordNet, and by analyzing the distances of objects in the neigh-

borhood of the objects under consideration. Also, some weights are used to

produce a final coefficient. Then, type conflicts are analyzed and resolved

by taking as input the results of synonyms and hyponyms analysis.
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3.1.4 SKAT and ONION (Stanford University)

SKAT (Semantic Knowledge Articulation Tool) is a rule-based system that

semi-automatically discovers mappings between two ontologies [103]. In-

ternally, input ontologies are encoded as graphs. Rules are provided by

domain experts and are encoded in first order logic. In particular, ex-

perts specify initially desired matches and mismatches. For example, a

rule President = Chancellor, indicates that we want President to be an

appropriate match to Chancellor. Apart from declarative rules, experts

can specify matching procedures that can be used to generate the new

matches. Thus, experts have to approve or reject the automatically sug-

gested matches, thereby producing the resulting alignment. Matching pro-

cedures are applied sequentially. Some examples of these procedures are:

string-based matching, e.g., two terms match if they are spelled similarly,

and structure matching, e.g., structural graph slices matching, such as con-

sidering nodes near the root of the first ontology against nodes near the

root of the second ontology.

ONION (ONtology compositION) is a successor system. It discovers

mappings between multiple ontologies semi-automatically. The ultimate

goal of matching is to enable a unified query answering over the involved

ontologies [104]. Input ontologies (the system handles RDF files) are in-

ternally represented as labeled graphs. The alignment is viewed as a set of

articulation rules. The semi-automated algorithm for resolving the termi-

nological heterogeneity of [102] forms the basis of the articulation genera-

tor, ArtGen, for the ONION system. ArtGen, in turn, can be viewed as an

evolution of the SKAT system with some added matchers. Thus, it exe-

cutes a set of matchers and suggests articulation rules to the user. A human

expert can either accept, modify or delete the suggestions. The expert can

also indicate the new matches that the articulation generator might have
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missed. ArtGen works sequentially, first by performing linguistic matching

and then structure-based matching. During the linguistic matching phase,

concept names are represented as sets of words. The linguistic matcher

compares all possible pairs of words from any two concepts of both ontolo-

gies and assigns a similarity score in [0 1] to each pair. The matcher uses

a word similarity table generated by a thesaurus-based or corpus-based

matcher called the word relator to determine the similarity between pairs

of words. The similarity score between two concepts is the average of the

similarity scores (ignoring scores of zero) of all possible pairs of words in

their names. If this score is higher than a given threshold, ArtGen gener-

ates a match candidate. Structure-based matching is performed based on

the results of the linguistic matching. It looks for structural isomorphism

between subgraphs of the ontologies, taking into account some linguistic

clues (see also §3.1.9 for a similar technique). The structural matcher tries

to match only the unmatched pairs from the linguistic matching, thereby

complementing its results.

3.1.5 Artemis (Università di Milano,

Università di Modena e Reggio Emilia)

Artemis (Analysis of Requirements: Tool Environment for Multiple Infor-

mation Systems) [21] was designed as a module of the MOMIS mediator

system [11, 10] for creating global views. It performs affinity-based anal-

ysis and hierarchical clustering of source schema elements. Affinity-based

analysis represents the matching step: in a sequential manner it calculates

the name, structural and global affinity coefficients exploiting a common

thesaurus. The common thesaurus is built with the help of ODB-Tools [9],

WordNet or manual input. It represents a set of intensional and a set

of extensional relationships which depict intra- and inter-schema knowl-

edge about classes and attributes of the input schemas. Based on global
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affinity coefficients, a hierarchical clustering technique categorizes classes

into groups at different levels of affinity. For each cluster it creates a set

of global attributes and the global class. Logical correspondence between

the attributes of a global class and source schema attributes is determined

through a mapping table.

3.1.6 H-Match (Università degli Studi di Milano)

H-Match [23] is an automated ontology matching system. It was designed

to enable knowledge discovery and sharing in the settings of open net-

worked systems, in particular within the Helios peer-to-peer framework

[22]. The system handles ontologies specified in OWL. Internally, these are

encoded as graphs using the H-model representation [22]. H-Match inputs

two ontologies and outputs (one-to-one or one-to-many) correspondences

between concepts of these ontologies with the same or closest intended

meaning. The approach is based on a similarity analysis through affinity

metrics, e.g., term to term affinity, datatype compatibility, and thresholds.

H-Match computes two types of affinities (in the [0 1] range), namely lin-

guistic and contextual affinity. These are then combined by using weighting

schemas, thus yielding a final measure, called semantic affinity. Linguistic

affinity builds on top of a thesaurus-based approach of the Artemis system

(§3.1.5). In particular, it extends the Artemis approach (i) by building

a common thesaurus involving such relations among WordNet synsets as

meronymy or coordinate terms, and (ii) by providing an automatic handler

of compound terms (i.e., those composed by more than one token) that are

not available from WordNet. Contextual affinity requires consideration of

the neighbor concepts, e.g., linked via taxonomical or mereological rela-

tions, of the actual concept.

One of the major characteristics of H-Match is that it can be dynami-

cally configured for adaptation to a particular matching task. Notice that
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in dynamic settings complexity of a matching task is not known in ad-

vance. This is achieved by means of four matching models. These are:

surface, shallow, deep, and intensive, each of which involves different types

of constructs of the ontology. Computation of a linguistic affinity is a

common part of all the matching models. In case of the surface model,

linguistic affinity is also the final affinity, since this model considers only

names of ontology concepts. All the other three models take into account

various contextual features and therefore contribute to the contextual affin-

ity. For example, the shallow model takes into account concept properties,

whereas the deep and the intensive models extend previous models by in-

cluding relations and property values, respectively. Each concept involved

in a matching task can be processed according to its own model, inde-

pendently from the models applied to the other concepts within the same

task. Finally, by applying thresholds, correspondences with semantic (fi-

nal) affinity higher than the cut-off threshold value are returned in the final

alignment.

3.1.7 Anchor-Prompt (Stanford Medical Informatics)

Anchor-Prompt [113] is an extension of Prompt, also formerly known as

SMART, and is an ontology merging and alignment tool with a sophisti-

cated prompt mechanism for possible matching terms [111]. Prompt han-

dles ontologies expressed in such knowledge representation formalisms as

OWL and RDF Schema. Anchor-Prompt is a sequential matching algo-

rithm that takes as input two ontologies, internally represented as graphs

and a set of anchors-pairs of related terms, which are identified with the

help of string-based techniques, such as edit-distance, or defined by a user

or another matcher computing linguistic similarity. Then the algorithm

refines them by analyzing the paths of the input ontologies limited by the

anchors in order to determine terms frequently appearing in similar posi-
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tions on similar paths. Finally, based on the frequencies and user feedback,

the algorithm determines matching candidates.

3.1.8 OntoBuilder (Technion Israel Institute of Technology)

OntoBuilder is a system for information seeking on the web [105]. A typical

situation the system deals with is, for example, when a user is searching for

a car to be rented. Obviously, the user would like to compare prices from

multiple providers in order to make an informed decision. Thus, the same

input information has to be typed in many times. OntoBuilder operates

in two phases, namely: (i) ontology creation (the so called training phase)

and (ii) ontology adaptation (the so called adaptation phase). During

the training phase an initial ontology (in which a user’s data needs are

encoded) is created by extracting it from a visited web-site of, e.g., AVIS

car rental company. The adaptation phase includes on-the-fly matching

and interactive merging operations of the related ontologies with the actual

(initial) ontology. Ontology creation is out of the scope of this thesis.

Hence, we concentrate only on the ontology adaptation phase. During

the adaptation phase the user suggests the web sites (s)he would like to

further explore, e.g., the Hertz car rental company. Each such a site goes

through the ontology extraction process, thus, resulting in a candidate

ontology, which is then merged into the actual ontology. To support this,

the best match for each existing term in the actual ontology (to terms from

the candidate ontology) is selected. Selection strategy employs thresholds.

The matching algorithm works in a term to term fashion. It sequentially

executes a number of matchers. Some examples of the matchers used here

are removing noisy characters and stop terms and substring matching. If

all else fails, a thesaurus look-up is performed. Finally, mismatched terms

are presented to the user for manual matching. Some further matchers

such as those for precedence matching were introduced in a later work in
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[49]. Also top-k mappings as alternative for single best matching (i.e.,

top-1 category) was proposed in [48].

3.1.9 Cupid (University of Washington, Microsoft Corporation,

University of Leipzig)

Cupid [88] implements a sequential algorithm comprising linguistic and

structural schema matching techniques, and computing similarity coeffi-

cients with the assistance of domain specific thesauri. Input schemas are

encoded as graphs. Nodes represent schema elements and are traversed

in a combined bottom-up and top-down manner. The matching algorithm

consists of three phases and operates only with tree-structures, to which

non-tree cases are reduced. The first phase (linguistic matching) computes

linguistic similarity coefficients between schema element names (labels)

based on morphological normalisation, categorization, string-based tech-

niques, such as common prefix, suffix tests, and thesauri look-up. The

second phase (structural matching) computes structural similarity coeffi-

cients weighted by leaves which measure the similarity between contexts

in which elementary schema elements occur. The third phase (mapping

elements generation) aggregates the results of the linguistic and structural

matching through a weighted sum and generates a final alignment by choos-

ing pairs of schema elements with weighted similarity coefficients which are

higher than a threshold.
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3.1.10 COMA and COMA++ (University of Leipzig)

COMA (COmbination of MAtching algorithms) [31] is a schema matching

tool based on parallel composition of matchers. It provides an extensi-

ble library of matching algorithms, a framework for combining obtained

results, and a platform for the evaluation of the effectiveness of the dif-

ferent matchers. As in [31], COMA contains six elementary matchers,

five hybrid (i.e., combinations of elementary methods) matchers, and one

reuse-oriented matcher. Most of them implement string-based techniques,

such as affix, n-gram, edit distance; others share techniques with Cupid

(thesauri look-up, etc.). Reuse-oriented is an original matcher, which tries

to reuse previously obtained results for entire new schemas or for its frag-

ments. Schemas are internally encoded as directed acyclic graphs, where

elements are the paths. This aims at capturing contexts in which the ele-

ments occur. Distinct features of the COMA tool in respect to Cupid are a

more flexible architecture and the possibility of performing iterations in the

matching process. It presumes interaction with users who approve obtained

matches and mismatches to gradually refine and improve the accuracy of

match. COMA++ is built on top of COMA by elaborating in more detail

the alignment reuse operation, provides a more efficient implementation of

the COMA algorithms and a graphical user interface [31, 29].

3.1.11 Similarity Flooding (Stanford University,

University of Leipzig)

The Similarity Flooding (SF) [94] approach is based on the ideas of sim-

ilarity propagation. Schemas are presented as directed labeled graphs;

grounding on the OIM specification [92]. The algorithm manipulates them

in an iterative fix-point computation to produce an alignment between

the nodes of the input graphs. The technique starts from string-based
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comparison, such as common prefix, suffix tests, of the vertices labels to

obtain an initial alignment which is refined within the fix-point compu-

tation. The basic concept behind the similarity flooding algorithm is the

similarity spreading from similar nodes to the adjacent neighbors through

propagation coefficients. From iteration to iteration the spreading depth

and a similarity measure are increasing till the fix-point is reached. The

result of this step is a refined alignment which is further filtered to finalize

the matching process.

3.1.12 CtxMatch and CtxMatch2 (University of Trento,

ITC-IRST)

CtxMatch [17, 16, 18] represents the first instantiation of the semantic

matching approach [56]. It translates the ontology matching problem into

the logical validity problem and computes logical relations, such as equiv-

alence, subsumption between concepts and properties. CtxMatch is a se-

quential system. At the element level it uses only WordNet to find initial

matches for classes as well as for properties. At the structure level, it ex-

ploits description logic reasoners, such as Pellet1 or FaCT2 to compute the

final alignment in a way similar to what is presented in Chapter 2 when

discussing methods based on description logics.

3.1.13 DCM framework (University of Illinois at

Urbana-Champaign)

MetaQuerier [24] is a middleware system that assists users in finding and

quering multiple databases on the web. It exploits the Dual Correlation

Mining (DCM) matching framework to facilitate source selection according

to user search keywords [70]. Unlike other works, the given approach takes

1http://www.mindswap.org/2003/pellet/
2http://www.cs.man.ac.uk/∼horrocks/FaCT
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as input multiple schemas and returns alignments between all of them.

This setting is called holistic schema matching. DCM automatically dis-

covers complex mappings, e.g., {author} corresponds to {first name, last

name}, between attributes of the web query interfaces in the same domain

of interest, e.g., books. As the name (DCM) indicates, schema matching is

viewed as correlation mining. The idea is that co-occurrence patterns often

suggest complex matches. That is, grouping attributes, such as first name

and last name, tend to co-occur in query interfaces. Technically, this means

that those attributes are positively correlated. Contrary, attribute names

which are synonyms, e.g., quantity and amount , rarely co-occur, thus rep-

resenting an example of negative correlation between them. Matching is

performed in two phases. During the first phase (matching discovery), a

set of matching candidates is generated by mining first positive and then

negative correlations among attributes and attribute groups. Also, some

thresholds and a specific correlation measure such as the H -measure are

used. During the second phase (matching construction), by applying some

strategies of ranking, e.g., scoring function, rules, and selection, such as

iterative greedy selection, the final alignment is produced.

3.2 Mixed systems

The following systems take advantage of both schema-level and instance-

level input information if they are both available.

3.2.1 SEMINT (Northwestern University, NEC,

The MITRE Corporation)

SEMantic INTegrator (SEMINT) is a tool based on neural networks to

assist in identifying attribute correspondences in heterogeneous databases

[83, 84]. It supports access to a variety of database systems and utilizes
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both schema- and instance-level information to produce rules for match-

ing corresponding attributes automatically. The approach works as fol-

lows. First, it extracts from two databases all the necessary information

(features or discriminators) which is potentially available and useful for

matching. This includes normalized schema information, e.g., field speci-

fications, such as datatypes, length, constraints, and statistics about data

values, e.g., character patterns, such as ratio of numerical characters, ratio

of white spaces, and numerical patterns, such as mean, variance, standard

deviation. Second, by using a neural network as a classifier (self-organizing

map algorithm), it groups the attributes based on similarity of the features

for a single (the first) database. Then, it uses a back-propagation neural

network for learning and recognition. Based on the previously obtained

clusters, the learning is performed. Finally, using a trained neural net-

work on the first database features and clusters, the system recognizes and

computes similarities between the categories of attributes from the first

database and the features of attributes from the second database, thus,

generating a list of match candidates, which are to be inspected and con-

firmed or discarded by a human user.

3.2.2 Clio (IBM Almaden, University of Toronto)

Clio is a system for managing and facilitating data transformation and in-

tegration tasks within heterogeneous environments [99, 100, 106, 69]. Clio

handles relational and XML schemas. As a first step, the system trans-

forms the input schemas into an internal representation, which is a nested

relational model. The Clio approach is focused on making the alignment

operational. It is assumed that the matching step (namely, identifica-

tion of the so-called value correspondences) is performed with the help of a

schema matching component or manually by the user. The built-in schema

matching algorithm of Clio combines in a sequential manner instance-based
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attribute classification via a variation of a Naive Bayes classifier [67, 36, 90]

and string matching between elements names, e.g., by using edit distance

measure. Then, taking the n:m value correspondences (the alignment) to-

gether with constraints coming from the input schemas, Clio compiles these

into an internal query graph representation. In particular, an interpreta-

tion of the input correspondences is given. Thus, a set of logical mappings

with formal semantics is produced. To this end, Clio also supports map-

pings composition [47]. Finally, the query graph can be serialized into

different query languages, e.g., SQL, XSLT, XQuery, thus enabling actual

data to be moved from a source to a target, or to answer queries. The

system, besides trivial transformations, aims at discovering complex ones,

such as the generation of keys, references, join conditions.

3.2.3 NOM and QOM (University of Karlsruhe)

NOM (Naive Ontology Mapping) [40] and QOM (Quick Ontology Map-

ping) [39] are components of the FOAM framework [37].

NOM adopts the idea of parallel composition of matchers from COMA

(§3.1.10). Some innovations with respect to COMA are in the set of ele-

mentary matchers based on rules, exploiting explicitly codified knowledge

in ontologies, such as information about super- and sub-concepts, super-

and sub-properties, etc. At present the system supports 17 rules. For

example, a rule states that if super-concepts are the same, the actual con-

cepts are similar to each other. These rules use many terminological and

structural techniques.

QOM (Quick Ontology Mapping) [39] is a variation of the NOM system

dedicated to improve the efficiency of the system. The approach is based

on the idea that the loss of quality in matching algorithms is marginal (to a

standard baseline); however improvement in efficiency can be tremendous.

This fact allows QOM to produce correspondences fast, even for large-

33



3.2. MIXED SYSTEMS
CHAPTER 3. OVERVIEW OF

MATCHING SYSTEMS

size ontologies. QOM is grounded on matching rules of NOM. However,

for the purpose of efficiency the use of some rules, e.g., the rules that

traverse the taxonomy, have been restricted. QOM avoids the complete

pairwise comparison of trees in favor of a (n incomplete) top-down strategy,

thereby focusing only on promising matching candidates. The similarity

measures produced by basic matchers (matching rules) are refined by using

a sigmöıd function, thereby emphasizing high individual similarities and de-

emphasizing low individual similarities. They are then aggregated through

weighted average. Finally, with the help of thresholds, the final alignment

is produced.

3.2.4 OLA (INRIA Rhône-Alpes, Université de Montréal)

OLA (OWL Lite Aligner) [46] is an ontology matching system which is

designed with the idea of balancing the contribution of each of the compo-

nents that compose an ontology, e.g., classes, constraints, data instances.

OLA handles ontologies in OWL. It first compiles the input ontologies into

graph structures, unveiling all relationships between entities. These graph

structures produce the constraints for expressing a similarity between the

elements of the ontologies. The similarity between nodes of the graphs

follows two principles: (i) it depends on the category of node considered,

e.g., class, property, and (ii) it takes into account all the features of this

category, e.g., superclasses, properties.

The distance between nodes in the graph are expressed as a system of

equations based on string-based, language-based and structure-based sim-

ilarities. These distances are almost linearly aggregated (they are linearly

aggregated modulo local matches of entities). For computing these dis-

tances, the algorithm starts with base distance measures computed from

labels and concrete datatypes. Then, it iterates a fix-point algorithm until

no improvement is produced. From that solution, an alignment is gener-
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ated which satisfies some additional criterion on the alignment obtained

and the distance between matched entities.

3.2.5 Corpus-based matching (University of Washington,

Microsoft Research, University of Illinois at

Urbana-Champaign)

[87] proposed an approach to schema matching which, besides input in-

formation available from schemas under consideration, also exploits some

domain specific knowledge via an external corpus of schemas and map-

pings. The intuition behind the approach is based on the use of corpus

in information retrieval, where similarity between queries and concepts is

determined based on analyzing large corpora of text. In schema matching

settings, such a corpus can be initialized with a small number of schemas

obtained, for example, by using available standard schemas in the domain

of interest (see, for instance, XML.org3 and OASIS.org4) and should even-

tually evolve in time with new matching tasks.

Since the corpus is intended to have a number of different represen-

tations of each concept in the domain, it should facilitate learning these

variations in the elements and their properties. The corpus is exploited

in two ways. First, to obtain an additional evidence about each element

being matched by including evidence from similar elements in the corpus.

Second, in the corpus, similar elements are clustered and some statistics

for clusters are computed, such as neighborhood and ordering of elements.

These statistics are ultimately used to build constraints that facilitate se-

lection of the correspondences in the resulting alignment.

The approach handles web forms and relational schemas and focuses on

one-to-one alignments. It works in two logical phases. Firstly, schemas

3http://www.xml.org/
4http://www.oasis-open.org/
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under consideration are matched against the corpus, thereby augmenting

these with possible variations of their elements based on knowledge avail-

able from the corpus. Secondly, augmented schemas are matched against

each other. In both cases the same set of matchers is applied. In particu-

lar, basic matchers, called learners, include: (i) a name learner, (ii) a text

learner, (iii) a data instance learner, and (iv) a context learner. These

matchers mostly follow the ideas of techniques used in LSD [32] and Cupid

(§3.1.9). For example, the name learner exploits names of elements. It

applies tokenization and n-grams to the names in order to create training

examples. The matcher itself is a text classifier, such as Naive Bayes. In ad-

dition, the name learner, in order to determine similarity between element

names string, uses edit distance. The data instance learner determines

whether the values of instances share common patterns, same words, etc.

Also, a matcher for an automatic combination of the results produced by

basic matchers, called metalearner, uses logistic regression with the help of

stacking technique [133] in order to learn its parameters. Finally, by using

constraints obtained based on the statistics from the corpus, some filtering

of the candidate correspondences is performed in order to produce the final

alignment.

3.3 Summary

The panorama of systems considered in this chapter has multiplied the di-

versity of basic techniques by the variety of strategies for combining them

introduced in the previous chapter. However, there are a number of con-

stant features that are shared by the majority of systems. Also, usually

each individual system innovates on a particular aspect. Let us summarize

some global observations concerning the presented systems:

• Most of the systems under consideration deal with particular ontol-
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ogy types, such as DTDs, relational schemas and OWL ontologies.

Only a small number of systems aim at being generic, i.e., handle

multiple types of ontologies. Some examples include Cupid (§3.1.9),

COMA and COMA++ (§3.1.10), Similarity Flooding (§3.1.11) and

the approach proposed in this thesis.

• Most of the approaches take as input a pair of ontologies, including

the approach proposed in this thesis, while only a small number of

systems take as input multiple ontologies, e.g., DCM (§3.1.13).

• Most of the approaches handle only tree-like structures, including the

approach proposed in this thesis, while only a small number of systems

handle graphs. Some examples of the latter include Cupid (§3.1.9),

COMA and COMA++ (§3.1.10), and OLA (§3.2.4).

• Most of the systems focus on discovery of one-to-one alignments, while

only a small number of systems have tried to address the problem of

discovering more complex correspondences, such as one-to-many, e.g.,

the approach proposed in this thesis, and many-to-many, e.g., DCM

(§3.1.13).

• Most of the systems focus on computing confidence measures in [0 1]

range, most often standing for the fact that the equivalence relation

holds between ontology entities. Only a small number of systems com-

pute logical relations between ontology entities, such as equivalence,

subsumption. Some examples of the latter include CtxMatch (§3.1.12)

and the approach proposed in this thesis.

Table 3.1 summarizes how some of the matching systems considered

in this chapter cover the solution space in terms of the classification of

Chapter 2.
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Table 3.1: Basic matchers used by different systems

Element-level Structure-level

Syntactic External Syntactic Semantic

Hovy string-based, - taxonomic structure -

§3.1.1 language-based

TranScm string-based built-in thesaurus taxonomic structure, -

§3.1.2 matching of

neighbourhood

DIKE string-based, WordNet matching of -

§3.1.3 domain compatibility neighbourhood

SKAT string-based auxiliary thesaurus, taxonomic structure,

§3.1.4 corpus-based matching of -

neighbourhood

Artemis domain compatibility, common thesaurus (CT) matching of neighbours

§3.1.5 language-based via CT, -

clustering

H-Match domain compatibility, common thesaurus (CT) matching of neighbours

§3.1.6 language-based, via CT, -

domains and ranges relations

Anchor- string-based, bounded paths matching:

Prompt domains and ranges - (arbitrary links), -

§3.1.7 taxonomic structure

OntoBuilder string-based, thesaurus look up - -

§3.1.8 language-based

string-based, auxiliary thesauri tree matching

Cupid language-based, weighted by leaves -

§3.1.9 datatypes,

key properties

COMA & string-based, auxiliary thesauri, DAG (tree) matching with

COMA++ language-based, alignment reuse, a bias towards various -

§3.1.10 datatypes repository of structures structures (e.g., leaves)

SF string-based, iterative fix-point

§3.1.11 datatypes, - computation -

key properties

CtxMatch string-based, WordNet - based on

§3.1.12 language-based description logics

DCM - - correlation mining -

§3.1.13

SEMINT neural network,

§3.2.1 datatypes, - - -

value patterns

Clio string-based,

§3.2.2 language-based, - - -

Naive Bayes

NOM & QOM string-based, application-specific matching of neighbours, -

§3.2.3 domains and ranges vocabulary taxonomic structure

string-based, iterative fix-point

OLA language-based, WordNet computation, -

§3.2.4 datatypes matching of neighbours,

taxonomic structure
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For example as from Table 3.1, OLA (§3.2.4) exploits string-based element-

level matchers, a matcher based on WordNet, iterative fix-point computa-

tion, etc. Table 3.1 also testifies that ontology matching research so far was

mainly focused on syntactic and external techniques. In fact, many sys-

tems rely on the same string-based techniques. Similar observation can be

also made concerning the use of WordNet as an external resource of com-

mon knowledge. In turn, semantic techniques have rarely been exploited,

this is only done by the approach proposed in this thesis and CtxMatch

(§3.1.12).

Having considered some of the recent schema-based matching systems,

it is important to notice that the matching operation typically constitutes

only one of the steps towards the ultimate goal of, e.g., ontology integration,

data integration, and web service composition. To this end, we would like

to mention some existing infrastructures, which use matching as one of

its integral components. Some examples include: Chimaera [91], MAFRA

[27, 86], Rondo and Moda [96, 95, 93], Prompt Suite [112, 110], Alignment

API [42], GeRoMe [76], Protoplasm [14], COMA++ [31, 29] and ModelGen

[3, 4]. The goal of such infrastructures is to enable a user with a possibility

of performing such high-level tasks, e.g., given a product request expressed

in terms of the catalog C1, return the products satisfying the request from

the marketplaces MP1 and MP2. Moreover, use matching component

M5, and translate instances by using component T3.
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Chapter 4

S-Match algorithm

This chapter presents the semantic matching algorithm and expands on

the technical details of its steps.

Material presented in this chapter has been developed in collaboration

with Pavel Shvaiko and published in [57, 64, 58]. The semantic matching

approach presented in this chapter have been developed by Pavel Shvaiko.

See [56] for details.

In this chapter we first discuss the semantic matching by intuitions

and examples as well as we state the problem technically (§4.1). Then

we provide the main macro steps of the algorithm realizing the semantic

matching approach (§4.2-4.5).

4.1 Semantic matching

In our approach, we assume that all the data and conceptual models (e.g.,

classifications, database schemas, ontologies) can be generally represented

as graphs (see [56] for a detailed discussion). This allows for the statement

and solution of a generic (semantic) matching problem independently of

specific conceptual or data models, very much along the lines of what is
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done in Cupid [88] and COMA [31]. We focus on tree-like structures, e.g.,

classifications, and XML schemas. Real-world schemas are seldom trees,

however, there are (optimized) techniques, transforming a graph repre-

sentation of a schema into a tree representation, e.g., the graph-to-tree

operator of Protoplasm [14]. From now on we assume that a graph-to-tree

transformation can be done by using existing systems, and therefore, we

focus on other issues instead.

The semantic matching approach is based on two key notions, namely:

• Concept of a label, which denotes the set of documents (data instances)

that one would classify under a label it encodes;

• Concept at a node, which denotes the set of documents (data in-

stances) that one would classify under a node, given that it has a

certain label and that it is in a certain position in a tree.

Our approach can discover the following semantic relations between the

concepts at nodes of two schemas: equivalence (≡); more general (⊒);

less general (⊑); disjointness (⊥). When none of the relations holds, the

special idk (I do not know) relation is returned1. The relations are ordered

according to decreasing binding strength, i.e., from the strongest (≡) to the

weakest (idk), with more general and less general relations having equal

binding power. Notice that the strongest semantic relation always exists

since, when holding together, more general and less general relations are

equivalent to equivalence. The semantics of the above relations are the

obvious set-theoretic semantics.

A mapping element is a 4-tuple 〈IDij, ai, bj, R〉 , i =1,...,NA; j =1,...,NB

where IDij is a unique identifier of the given mapping element; ai is the

1Notice idk is an explicit statement that the system is unable to compute any of the declared (four)
relations. This should be interpreted as either there is not enough background knowledge, and therefore,
the system cannot explicitly compute any of the declared relations or, indeed, none of those relations
hold according to an application.
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i-th node of the first tree, NA is the number of nodes in the first tree;

bj is the j-th node of the second tree, NB is the number of nodes in the

second tree; and R specifies a semantic relation which may hold between

the concepts at nodes ai and bj. Semantic matching can then be defined as

the following problem: given two trees TA and TB compute the NA × NB

mapping elements 〈IDij, ai, bj, R〉, with ai ∈ TA, i=1,..., NA; bj ∈ TB, j

=1,..., NB; and R is the strongest semantic relation holding between the

concepts at nodes ai and bj. Since we look for the NA × NB correspon-

dences, the cardinality of mapping elements we are able to determine is

1:N. Also, these, if necessary, can be decomposed straightforwardly into

mapping elements with the 1:1 cardinality.

Let us summarize the algorithm for semantic matching via a running

example. We consider small academic courses classifications shown in Fig-

ure 4.1.

Figure 4.1: Parts of two classifications devoted to academic courses

Let us introduce some notation (see also Figure 4.1). Numbers are

the unique identifiers of nodes. We use “C” for concepts of labels and
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concepts at nodes. Thus, for example, in the tree A, CHistory and C4 are,

respectively, the concept of the label History and the concept at node 4.

Also, to simplify the presentation, whenever it is clear from the context we

assume that the concept of a label can be represented by the label itself. In

this case, for example, CHistory becomes denoted as History. Finally, we

sometimes use subscripts to distinguish between trees in which the given

concept of a label occurs. For instance, HistoryA, means that the concept

of the label History belongs to the tree A.

The algorithm takes as input two schemas and computes as output a

set of mapping elements in four macro steps:

• Step 1 : for all labels L in two trees, compute concepts of labels, CL.

• Step 2 : for all nodes N in two trees, compute concepts at nodes, CN .

• Step 3 : for all pairs of labels in two trees, compute relations among

CL’s.

• Step 4 : for all pairs of nodes in two trees, compute relations among

CN ’s.

The first two steps represent the preprocessing phase, while the third

and the fourth steps are the element level and structure level matching

respectively. It is important to notice that Step 1 and Step 2 can be

done once, independently of the specific matching problem. Step 3 and

Step 4 can only be done at run time, once the two trees which must be

matched have been chosen. We also refer in the remainder of the thesis to

the element level matching (Step 3) as label matching and to the structure

level matching (Step 4) as node matching.

We view labels of nodes as concise descriptions of the data that is stored

under the nodes. During Step 1, we compute the meaning of a label at a
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node (in isolation) by taking as input a label, by analyzing its real-world se-

mantics (e.g., using WordNet [98]2), and by returning as output a concept of

the label. Thus, for example, by writing CHistory we move from the natural

language ambiguous label History to the concept CHistory, which codifies

explicitly its intended meaning, namely the data (documents) which are

about history.

During Step 2 we analyze the meaning of the positions that the labels

of nodes have in a tree. By doing this we extend concepts of labels to

concepts at nodes. This is required to capture the knowledge residing in

the structure of a tree, namely the context in which the given concept of

label occurs [54]. Thus, for example, in the tree A, when we write C4 we

mean the concept describing all the documents of the (academic) courses,

which are about history.

Step 3 is concerned with acquisition of “world” knowledge. Relations

between concepts of labels are computed with the help of a library of

element level semantic matchers. These matchers take as input two con-

cepts of labels and produce as output a semantic relation (e.g., equiv-

alence, more/less general) between them. For example, from WordNet

[98] we can derive that course and class are synonyms, and therefore,

CCourses ≡ CClasses.

Step 4 is concerned with the computation of the relations between con-

cepts at nodes. This problem cannot be resolved by exploiting static knowl-

edge sources only. We have (from Step 3) background knowledge, codified

as a set of relations between concepts of labels occurring in two trees. This

knowledge constitutes the background theory (axioms) within which we

reason. We need to find a semantic relation (e.g., equivalence, more/less

general) between the concepts at any two nodes in two trees. However,

2WordNet is a lexical database for English. It is based on synsets (or senses), namely structures
containing sets of terms with synonymous meanings.
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these are usually complex concepts obtained by suitably combining the

corresponding concepts of labels. For example, suppose we want to find a

relation between C4 in the tree A (which, intuitively, stands for the concept

of courses of history) and C4 in the tree B (which, intuitively, stands for

the concept of classes of history). In this case, we should realize that they

have the same extension, and therefore, that they are equivalent.

4.2 Step 1: Concepts of labels

computation

Technically, the main goal of Step 1 is to automatically translate ambigu-

ous natural language labels taken from the schema elements’ names into

an internal logical language. We use a propositional description logic lan-

guage (LC) for several reasons. First, given its set-theoretic interpretation,

it ”maps” naturally to the real world semantics. Second, natural language

labels, e.g., in classifications, are usually short expressions or phrases hav-

ing simple structure. These phrases can often be converted into a formula

in LC with no or little loss of meaning [55]. Third, a formula in LC can be

converted into an equivalent formula in a propositional logic language with

boolean semantics. Apart from the atomic propositions, the language LC

includes logical operators, such as conjunction (∧), disjunction (∨), and

negation (¬). There are also comparison operators, namely more general

(⊒), less general (⊑), and equivalence (≡). The interpretation of these op-

erators is the standard set-theoretic interpretation. We compute concepts

of labels according to the following four logical phases, being inspired by

the work in [89].

1. Tokenization. Labels of nodes are parsed into tokens by a tokenizer

which recognizes punctuation, cases, digits, stop characters, etc. Thus,

for instance, the label History and Philosophy of Science becomes his-
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tory, and, philosophy, of, science. The multiword concepts are then

recognized. At the moment the list of all multiword concepts in Word-

Net [98] is exploited here together with a heuristic which takes into

account the natural language connectives, such as and, or, etc. For ex-

ample, Earth and Atmospheric Sciences becomes earth sciences, and,

atmospheric, sciences since WordNet contains senses for earth sci-

ences, but not for atmospheric sciences.

2. Lemmatization. Tokens of labels are further lemmatized, namely they

are morphologically analyzed in order to find all their possible basic

forms. Thus, for instance, sciences is associated with its singular form,

science. Also here we discard from further considerations some prede-

fined meaningless (in the sense of being useful for matching) words,

articles, numbers, and so on.

3. Building atomic concepts. WordNet is queried to obtain the senses of

lemmas identified during the previous phase. For example, the label

Sciences has the only one token sciences, and one lemma science. From

WordNet we find out that science has two senses as a noun.

4. Building complex concepts. When existing, all tokens that are preposi-

tions, punctuation marks, conjunctions (or strings with similar roles)

are translated into logical connectives and used to build complex con-

cepts out of the atomic concepts constructed in the previous phase.

Thus, for instance, commas and conjunctions are translated into log-

ical disjunctions, prepositions, such as of and in, are translated into

logical conjunctions, and words like except, without are translated

into negations. Thus, for example, the concept of label History and

Philosophy of Science is computed as CHistory and Philosophy of Science=

(CHistory∨CPhilosophy)∧CScience, where CScience = 〈science, sensesWN#2〉

is taken to be the union of two WordNet senses, and similarly for his-
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tory and philosophy. Notice that natural language and is converted

into logical disjunction, rather than into conjunction (see [89] for de-

tailed discussion and justification for this choice).

The result of Step 1 is the logical formula for concept of label. It is

computed as a full propositional formula were literals stand for atomic

concepts of labels.

In Algorithm 1 we present the pseudocode which provides an algorithmic

account of how concepts of labels are built. In particular, the buildCLab

function takes the tree of nodes context and constructs concepts of labels

for each node in the tree. The nodes are preprocessed in the main loop in

lines 220-350. Within this loop, first, the node label is obtained in line 240.

Then, it is tokenized and lemmatized in lines 250 and 260, respectively.

The (internal) loop on the lemmas of the node (lines 270-340) starts from

stop words test in line 280. Then, WordNet is queried. If the lemma is in

WordNet, its senses are extracted. In line 300, atomic concept of label is

created and attached to the node by the addACOLtoNode function. In the

case when WordNet returns no senses for the lemma, the special identifier

SENSES NOT FOUND is attached to the atomic concept of label3. The

propositional formula for the concept of label is iteratively constructed by

constructcLabFormula (line 340). Finally, the logical formula is attached

to the concept at label (line 350) and some sense filtering is performed by

elementLevelSenseFiltering4.

The pseudo code of Algorithm 2 illustrates the sense filtering technique.

It is used in order to filter out the irrelevant (for the given matching

task) senses from concepts of labels. In particular, we look whether the

senses of atomic concepts of labels within each concept of a label are con-

3This identifier is further used by element level semantic matchers in Step 3 of the matching algorithm
in order to determine the fact that the label (lemma) under consideration is not contained in WordNet,
and therefore, there are no senses in WordNet for a given concept.

4The sense filtering problem is also known under the name of word sense disambiguation (WSD).
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Algorithm 1 Concept of label construction pseudo code

Node: struct of
int nodeId;
String label;
String cLabel;
String cNode;
AtomicConceptAtLabel[ ] ACOLs;

AtomicConceptOfLabel struct of
int id;
String token;
String[ ] wnSenses;

200. void buildCLab(Tree of Nodes context)
210. String[ ] wnSenses;
220. for each node ∈ context
230. String cLabFormula=“ ”;
240. String nodeLabel=getLabel(node);
250. String[ ] tokens=tokenize(nodeLabel);
260. String[ ] lemmas=lematize(tokens);
270. for each lemma ∈ lemmas
280. if (isMeaningful(lemma))
290. if (!isInWordnet(lemma))
300. addACOLtoNode(node, lemma, SENSES NOT FOUND);
310. else
320. wnSenses= getWNSenses(token);
330. addACOLtoNode(node, lemma, wnSenses);
340. cLabFormula=constructcLabFormula(cLabFormula, lemma);
350. setcLabFormula(node, cLabFormula);
360. elementLevelSenseFiltering(node);
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nected by any relation in WordNet. If so, we discard all other senses from

atomic concept of label. Otherwise we keep all the senses. For example,

for the concept of label Sites and Monuments before the sense filtering

step we have Sites, sensesWN#4 ∧ Monuments, sensesWN#3. Since the

second sense of monument is a hyponym of the first sense of site, notation-

ally Monument#2 ⊑ Site#1, all the other senses are discarded. There-

fore, as a result of this sense filtering step we have Sites, sensesWN#1 ∧

Monuments, sensesWN#1.

elementLevelSenseFiltering takes the node structure as input and dis-

cards the irrelevant senses from atomic concepts of labels within the node.

In particular, it executes two loops on atomic concept of labels (lines 30-

120 and 50-120). WordNet senses for the concepts are acquired in lines 40

and 70. Then two loops on the WordNet senses are executed in lines 80-120

and 90-120. Afterwards, checking whether the senses are connected by a

WordNet relation is performed in line 100. If so, the senses are added to a

special set, called refined senses set (lines 110, 120). Finally, the WordNet

senses are replaced with the refined senses by saveRefinedSenses.

4.3 Step 2: Concepts at nodes

computation

Concepts at nodes are written in the same propositional description logic

language as concepts of labels. Classifications and XML schemas are hi-

erarchical structures where the path from the root to a node uniquely

identifies that node (and also its meaning). Thus, following an access cri-

terion semantics [68], the logical formula for a concept at node is defined

as a conjunction of concepts of labels located in the path from the given

node to the root. For example, in the tree A, the concept at node four is

computed as follows: C4 = CCourses ∧ CHistory.
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Algorithm 2 The pseudo code of element level sense filtering technique

10. void elementLevelSenseFiltering(Node node)
20. AtomicConceptOfLabel[ ] nodeACOLs=getACOLs(node);
30. for each nodeACOL ∈ nodeACOLs
40. String[ ] nodeWNSenses=getWNSenses(nodeACOL);
50. for each ACOL ∈ nodeACOLs
60. if (ACOL!=nodeACOL)
70. String[ ] wnSenses=getWNSenses(ACOL);
80. for each nodeWNSense ∈ nodeWNSenses
90. for each wnSense ∈ wnSenses
100. if (isConnectedbyWN(nodeWNSense, focusNodeWNSense))
110. addToRefinedSenses(nodeACOL,nodeWNSense);
120. addToRefinedSenses(focusNodeACOL, fo-
cusNodeWNSense);
130. saveRefinedSenses(context);

140. void saveRefinedSenses(context)
150. for each node ∈ context
160. AtomicConceptOfLabel[ ] nodeACOLs=getACOLs(node);
170. for each nodeACOL ∈ NodeACOLs
180. if (hasRefinedSenses(nodeACOL))
190. //replace original senses with refined
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Further in the thesis we require the concepts at nodes to be consistent

(satisfiable). The reasons for their inconsistency are negations in atomic

concepts of labels. For example, natural language label except geology

is translated into the following logical formula Cexcept geology = ¬Cgeology.

Therefore, there can be a concept at node represented by a formula of

the following type Cgeology ∧ ∧ ¬Cgeology, which is inconsistent. In this

case the user is notified that the concept at node formula is unsatisfiable

and asked to decide a more important branch, i.e., (s)he can choose what

to delete from the tree, namely Cgeology or Cexcept geology. Notice that this

does not sacrifice the system performance since this check is made within

the preprocessing (i.e., offline, when the tree is edited)5. Let us consider

the following example: CN = CMedieval ∧ CModern. Here, concept at node

formula contains two concepts of labels, which are as from WordNet dis-

joint. Intuitively, this means that the context talks about either Medieval

or Modern (or there is implicit disjunction in the concept at node formula).

Therefore, in such cases, the formula for concept at node is rewritten in

the following way: CN = (CMedieval ∨ CModern)....

The pseudo code of the second step is presented as Algorithm 3. The

buildCNode function takes as an input the tree of nodes with precomputed

concepts of labels and computes as output the concept at node for each

node in the tree. The sense filtering (line 620) is performed by struc-

tureLevelSenseFiltering in the way similar to the sense filtering approach

used at the element level (as discussed in Algorithm 2). Then, the formula

for the concept at node is constructed within buildcNodeFormula as con-

junction of concepts of labels attached to the nodes in the path to the root.

Finally, the formula is checked for unsatisfiability (line 640). If so, user is

asked about the possible modifications in the tree structure or they are

5In general case the reasoning is as costly as in the case of propositional logic (i.e., deciding unsatisfia-
bility of the concept is co-NP hard). In many real world cases (see [63] for more details) the corresponding
formula is Horn. Thus, its satisfiability can be decided in linear time.
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applied automatically, specifically implicit disjunctions are added between

disjoint concepts (line 650).

Algorithm 3 Concepts at nodes construction pseudo code

600. void buildCNode(Tree of Node context)
610. for each node ∈ context
620. structureLevelSenseFiltering(node,context);
630. String cNodeFormula=buildcNodeFormula(node, context);
640. if (isUnsatisifiable(cNodeFormula))
650. updateFormula(cNodeFormula);

Let us discuss how the structure level sense filtering operates. As noticed

before, this technique is similar to the one described in Algorithm 2. The

major difference is that the senses now are filtered not within the node label

but within the tree structure. For all concepts of labels we collect all their

ancestors and descendants. We call them a focus set. Then, all WordNet

senses of atomic concepts of labels from the focus set are compared with

the senses of the atomic concepts of labels of the concept. If a sense of

atomic concept of label is connected by a WordNet relation with the sense

taken from the focus set, then all other senses of these atomic concepts of

labels are discarded. Therefore, as a result of sense filtering step we have (i)

the WordNet senses which are connected with any other WordNet senses

in the focus set or (ii) all the WordNet senses otherwise. After this step the

meaning of concept of labels is reconciled with respect to the knowledge

residing in the tree structure. The pseudo code of Algorithm 4 provides an

algorithmic account of the structure level sense filtering procedure.

The structureLevelSenseFiltering function takes a node and a tree of

nodes as input and refines the WordNet senses within atomic concepts

of labels in the node with respect to the tree structure. First, atomic

concepts at labels from the ancestor and descendant nodes are gathered

into the focus set (line 420). Then, a search for pairwise relations between

the senses attached to the atomic concepts of labels is performed (lines
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440-520). These senses are added to the refined senses set (lines 530-540)

and further saveRefinedSenses from Algorithm 4 is applied (line 550) in

order to save the refined senses.

Algorithm 4 The pseudo code of structure level sense filtering technique

400.void structureLevelSenseFiltering(Node node, Tree of Nodes context)
410. AtomicConceptOfLabel[ ] focusNodeACOLs;
420. Node[ ] focusNodes=getFocusNodes(node, context);
430. AtomicConceptOfLabel[ ] nodeACOLs=getACOLs(node);
440. for each nodeACOL ∈ nodeACOLss
450. String[ ] nodeWNSenses=getWNSenses(nodeACOL);
460. for each nodeWNSense ∈ nodeWNSenses
470. for each focusNode ∈ focusNodes
480. focusNodeACOLs=getACOLs(focusNode);
490. for each focusNodeACOL ∈ focusNodeACOLs
500. String[ ] fNodeWNSenses=getWNSenses(focusNodeACOL);
510. for each fNodeWNSense ∈ nodeWNSenses
520. if (isConnectedbyWN(nodeWNSense, fNodeWNSense))
530. addToRefinedSenses(nodeACOL,nodeWNSense);
540. addToRefinedSenses(focusNodeACOL, focusNodeWNSense);
550. saveRefinedSenses(context);

4.4 Step 3: Label Matching

4.4.1 A library of label matchers

Include detailed description of element level matchers Relations

between concepts of labels are computed with the help of a library of el-

ement level semantic matchers [62]. These matchers take as input two

atomic concepts of labels and produce as output a semantic relation be-

tween them. Some of them are reimplementations of well-known matchers

used in Cupid [88] and COMA [31]. The most important difference is that

our matchers ultimately return a semantic relation, rather than an affinity

level in the [0,1] range, although sometimes using customizable thresholds.
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Table 4.1: Element level semantic matchers.

Matcher name Execution Approximation Matcher Schema info

order level type

Prefix 2 2 String-based Labels

Suffix 3 2 String-based Labels

Edit distance 4 2 String-based Labels

Ngram 5 2 String-based Labels

Text corpus 13 3 String-based Labels + corpus

WordNet 1 1 Sense-based WordNet senses

Hierarchy distance 6 3 Sense-based WordNet senses

WordNet gloss 7 3 Gloss-based WordNet senses

Extended WordNet gloss 8 3 Gloss-based WordNet senses

Gloss comparison 9 3 Gloss-based WordNet senses

Extended gloss comparison 10 3 Gloss-based WordNet senses

Semantic gloss comparison 11 3 Gloss-based WordNet senses

Extended semantic gloss comparison 12 3 Gloss-based WordNet senses

Our label matchers are briefly summarized in Table 4.1. The first col-

umn contains the names of the matchers. The second column lists the order

in which they are executed. The third column introduces the matchers’

approximation level. The relations produced by a matcher with the first

approximation level are always correct. For example, name ⊒ brand as

returned by WordNet. In fact, according to WordNet name is a hypernym

(superordinate word) of brand. Notice that name has 15 senses and brand

has 9 senses in WordNet. We use sense filtering techniques to discard the

irrelevant senses, see Sections 4.2 and 4.3 for details. The relations pro-

duced by a matcher with the second approximation level are likely to be

correct (e.g., net ≡ network, but hot ≡ hotel by Prefix). The relations

produced by a matcher with the third approximation level depend heavily

on the context of the matching task (e.g., cat ≡ dog by Extended gloss

comparison in the sense that they are both pets). Note, matchers by de-

fault are executed following the order of increasing approximation level.

The fourth column reports the matchers’ type. The fifth column describes

the matchers’ input.

We have three main categories of matchers: string-, sense- and gloss-

based matchers. String-based matchers exploit string comparison tech-
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niques in order to produce the semantic relation, while sense-based ex-

ploit the structural properties of the WordNet hierarchies and gloss-based

compare two textual descriptions (glosses) of WordNet senses. Below, we

discuss in detail some matchers from each of these categories.

4.4.2 Prefix

Prefix is a string based matcher. It checks whether one input label starts

with the other. It returns an equivalence relation in this case, and Idk oth-

erwise. The examples of relations Prefix produced are summarized in Ta-

ble 4.2. Prefix is efficient in matching cognate words and similar acronyms

Table 4.2: Semantic relations produced by prefix matcher
Source label Target label Semantic relation

net network =
hot hotel =
cat core Idk

(e.g., RDF and RDFS ) but often syntactic similarity does not imply se-

mantic relatedness. Consider the examples in Table 4.2. The matcher

returns equality for hot and hotel which is wrong but it recognizes the

right relations in the case of the pairs net, network and cat, core.

4.4.3 Suffix

Suffix is a string based matcher. It checks whether one input label ends

with the other. It returns the equivalence relation in this case and Idk

otherwise. The results produced by Suffix are summarized in Table 4.3.

Suffix performs very similarly to Prefix. It correctly recognizes cognate

words (phone, telephone) but makes mistakes with syntactically similar

but semantically different words (word, sword).
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Table 4.3: Semantic relations produced by suffix matcher
Source label Target label Semantic relation

phone telephone =
word sword =
door floor Idk

4.4.4 Edit Distance

Edit distance is a string based matcher. It calculates the edit distance

measure between two labels. The calculation includes counting the num-

ber of the simple editing operations (delete, insert and replace) needed to

convert one label into another and dividing the obtained number of op-

erations with max(length(label1),length(label2)). The result is a value in

[0..1]. If the value exceeds a given threshold (0.6 by default) the equiv-

alence relation is returned, otherwise, Idk is produced. Edit Distance is

Table 4.4: Semantic relations produced by edit distance matcher
Source label Target label Semantic relation

street street1 =
proper propel =
owe woe Idk

useful with some unknown to WordNet labels. For example, it can easily

match labels street1, street2, street3, street4 to street (edit distance mea-

sure is 0.86). In the case of matching proper with propel the edit distance

similarity measure has 0.83 value, but equivalence is obviously the wrong

output.

4.4.5 nGram

NGram is a string based matcher. It counts the number of the same ngrams

(e. g., sequences of n characters) in the input labels. For example, trigrams

for the word address are add, ddr, dre, res, ess. If the value exceeds a given
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threshold the equivalence relation is returned. Otherwise Idk is produced.

The relations produced by NGram are summarized in Table 4.5.

Table 4.5: Semantic relations produced by nGram matcher
Source label Target label Semantic relation

address address1 =
behavior behaviour =

door floor Idk

4.4.6 WordNet

WordNet [98] is a lexical database which is available online and provides

a large repository of English lexical items. WordNet contains synsets (or

senses), structures containing sets of terms with synonymous meanings.

Each synset has a gloss that defines the concept that it represents. For

example the words night, nighttime and dark constitute a single synset

that has the following gloss: the time after sunset and before sunrise while

it is dark outside. Synsets are connected to one another through explicit

semantic relations. Some of these relations (hypernymy, hyponymy for

nouns and hypernymy and troponymy for verbs) constitute kind-of and

part-of (holonymy and meronymy for nouns) hierarchies. In example, tree

is a kind of plant, tree is hyponym of plant and plant is hypernym of tree.

Analogously from trunk is a part of tree we have that trunk is meronym

of tree and tree is holonym of trunk. The relations of WordNet 2.0 are

presented on Table 4.6.

Figure 4.2 shows an example of nouns taxonomy.

WordNet matcher is a knowledge based matcher. It translates the rela-

tions provided by WordNet to semantic relations according to the following

rules:

• A ⊑ B if A is a hyponym, meronym or troponym of B;
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Table 4.6: Possible relationships in WordNet

Relation Description Example

Hypernym is a generalization of motor vehicle is a hypernym of car

Hyponym is a kind of car is a hyponym of motor vehicle

Meronym is a part of lock is a meronym of door

Holonym contains part door is a holonym of lock

Troponym is a way to fly is a troponym of travel

Antonym opposite of stay in place is an antonym of travel

Attribute attribute of fast is an attribute of speed

Entailment entails calling on the phone entails dialing

Cause cause to to hurt causes to suffer

Also See related verb to lodge is related to reside

Similar to similar to evil is similar to bad

Participle of is participle of stored is the participle of to store

Pertainym pertains to radial pertains to radius

Figure 4.2: An example of WordNet nouns taxonomy
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• A ⊒ B if A is a hypernym or holonym of B;

• A = B if they are connected by synonymy relation or they belong to

one synset (night and nighttime from abovementioned example);

• A ⊥ B if they are connected by antonymy relation or they are the

siblings in the part of hierarchy.

Notice that hyponymy, meronymy, troponymy, hypernymy and holonymy

relations are transitive. Therefore, for example, from Figure 4.2 we can de-

rive that Person⊑LivingThing.

If none of the abovementioned relations holds among the two input

synsets Idk relation is returned.

Table 4.7 illustrates WordNet matcher results.

Table 4.7: Semantic relations produced by WordNet matcher
Source label Target label Semantic relation

car minivan ⊒
car auto =
tail dog ⊑
red pink Idk

4.4.7 Leacock Chodorow Matcher

Leacock Chodorow matcher is a knowledge based matcher. It exploits Lea-

cock Chodorow semantic similarity measure. It returns ≡ if the measure

exceeds the given threshold and Idk otherwise. The measure is based on

counting the number of links between two input synsets. Intuitively, the

shorter the path, the more related are the concepts under consideration.

Leacock and Chodorow[80] considered the noun is a hierarchy. They pro-

posed the following formula for estimating the similarity of two synsets:

simlc(c1, c2) = − ln

(
spath (c1, c2)

2 · D

)

(4.1)
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where spath(s1, s2) is the length of the shortest path between the two

synsets c1 and c2 and D is the depth of the tree.

The measure has a lower bound of 0 and upper bound Ub = − ln(1/(2 ·

maxDepth)), where maxDepth is a maximum depth of the taxonomy.

Table 4.8 illustrates Leacock Chodorow matcher results with 3.0 thresh-

old.

Table 4.8: Semantic relations produced by Leacock Chodorow matcher
Source synset Target synset Semantic relation

autograph signature =
actor actress =
dog cat Idk
sky atmosphere Idk

4.4.8 Resnik Matcher

Resnik matcher is a knowledge based matcher. It exploits Resnik semantic

similarity measure. It returns ≡ if the measure exceeds the given threshold

and Idk otherwise. This measure is based on the concept of information

content [126]. Information content defines the generality or specificity of a

concept in a certain topic.

Information content of the given concept is calculated as follows. Firstly

the frequency6 of concept occurrences FC in text corpus is calculated. Then

the frequencies of all subsuming concepts are calculated and added to FC .

Thus the root concept will count the occurrences of all the concepts in

its taxonomy. In the case of WordNet synsets the frequency counts are

precomputed for wide range of large scale corpora. In our preliminary

experiments we exploited Brown corpus of standard american english [77].

6Here and further in the paper following to NL tradition we treat frequency as count (i.e., frequency
of concept occurrences is a number of times the given concept occurs in the corpora).
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Information content of a concept c is defined as:

IC(c) = − ln

(
freq(c)

freq(root)

)

(4.2)

where freq(c) and freq(root) are, respectively, the frequencies of the con-

cept c and the root of the taxonomy. Note that the fraction represents the

probability of occurrence of the concept in a large corpus.

Resnik defines the semantic similarity of the two concepts as the amount

of information they share in common. To be more precise, the amount of

information two concepts share in common is equal to the value of infor-

mation content of their lowest common subsumer, that is the lowest node

in the taxonomy that subsumes both concepts. For example the lowest

common subsumer of cat and dog is carnivore. Therefore Resnik measure

is defined as:

simres(c1, c2) = IC (lcs (c1, c2)) (4.3)

where IC is the information content of a concept and lcs(c1, c2) is the

lowest common subsumer of concepts c1 and c2.

This measure has a lower bound of 0 and no upper bound.

Table 4.9 illustrates Resnik matcher results with 10.0 threshold.

Table 4.9: Semantic relations produced by Resnik matcher
Source synset Target synset Semantic relation

robot android =
actor actress Idk
dog cat Idk

4.4.9 Jiang Conrath Matcher

Jiang Conrath matcher is a knowledge based matcher. It exploits Jiang

Conrath semantic similarity measure. It returns ≡ if the measure exceeds

the given threshold and Idk otherwise. This measure [73] incorporates both
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information content of the concepts and the information content of their

lowest common subsumer. Originally Jiang Conrath defined the distance

between two concepts as:

distancejc(c1, c2) = IC(c1) + IC(c2) − 2 · IC (lcs (c1, c2)) (4.4)

where IC is the information content of a concept and lcs finds the lowest

common subsumer of two given concepts.

Therefore the similarity of two concepts can be represented as

simjc(c1, c2) =
1

distancejc(c1, c2)
(4.5)

The formula has two special cases:

• In the first case all information content values are 0:

IC(c1) = IC(c2) = IC (lcs (c1, c2)) = 0 (4.6)

This happens when both concepts and their lowest common subsumer

are either the root node or have a frequency count of 0. In both cases

0 similarity is returned.

• The second case is when

IC(c1) + IC(c2) = 2 · IC (lcs (c1, c2)) (4.7)

which usually happens when

IC(c1) = IC(c2) = IC (lcs (c1, c2)) (4.8)

In this case c1 and c2 are the same concept and so we would like to

return a maximum value of relatedness.

This measure has a lower bound of 0 and the upper bound Ub = 1
− ln((froot−1)/froot)

,
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where froot is the frequency of the taxonomy root.

The pseudo code for the algorithm is presented below.

Algorithm 5 The pseudo code of Jiang Conrath matcher
1. struct Synset
2. String ID;
3. String[] lemmas;
4. String gloss;
5. String[] relations;

6. float match( Synset synset1, Synset synset2 )
7. String shortestPathId = getShortestPath( synset1, synset2 );
8. Synset lcs = getLowCommonSubsumer( shortestPathId );
9. float ic lcs = getInformationContent( lcs );
10. float ic s1 = getInformationContent( synset1 );
11. float ic s2 = getInformationContent( synset2 );
12. if ( ic s1 == ic s2 && ic s1 == ic lcs && ic lcs == 0)
13. return 0;
14. if ( ic s1 + ic s2 == 2*ic lcs )
15. return maxValue;
16. float distance = ic s1 + ic s2 - 2*ic lcs;
17. return 1/distance;

where ID (line 2) is the unique identifier, lemmas (line 3) is the list

of synonyms that represent this synset, gloss (line 4) is the definition

associated to that synset and relations (line 5) is a list of pointers to

other synsets connected to this by a WordNet relation. maxValue (line

12) is the upper bound.

Firstly the shortest path between two synsets is computed (line 7). Then

the lowest common subsumer of the input synsets is obtained (line 8).

The information content values are computed for both synsets and lowest

common subsumer in lines 6-8. Finally after handling the special cases

(lines 12-15) the distance (line 16) and similarity (line 17) are computed.

Table 4.10 illustrates Jiang Conrath matcher results with 1.0 threshold.
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Table 4.10: Semantic relations produced by Jiang Conrath matcher
Source synset Target synset Semantic relation

trip hallucination =
actor actress =
dog cat Idk

4.4.10 Lin Matcher

Lin matcher is a knowledge based matcher. It exploits Lin semantic sim-

ilarity measure. It returns ≡ if the measure exceeds the given threshold

and Idk otherwise. This measure is also based on information content[85].

It is defined as follows:

simlin(c1, c2) =
2 · IC (lcs (c1, c2))

IC(c1) + IC(c2)
(4.9)

In the case of IC(c1) = 0 and IC(c2) = 0 0 similarity is returned.

Table 4.11 illustrates Lin matcher results with 0.9 threshold.

Table 4.11: Semantic relations produced by Lin matcher
Source synset Target synset Semantic relation

robot android Idk
actor actress =
dog cat Idk

4.4.11 Hirst-St.Onge Matcher

Hirst-St.Onge matcher is a knowledge based matcher. It exploits Hirst-

St.Onge semantic similarity measure. It returns ≡ if the measure exceeds

the given threshold and Idk otherwise. This measure in contrast to infor-

mation content based measures is not restricted to noun hierarchies.

Hirst and St.Onge [71] classified links in WordNet in 3 different cate-

gories:

• Upward (e.g. hypernym);
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• Downward (e.g. holonym);

• Horizontal (e.g. antonym);

According to them two words are connected by a strong relation if:

• they both belong to the same synset;

• they belong to synsets connected by a horizontal link;

• one is a compound word, the second one is substring of the first while

their synsets are connected by an is a relation;

For strongly related words relatedness is computed as 2 · C, where C is a

constant used in the formula for medium-strong relations. Its value is 8,

so the coefficient is equal to 16.

A medium-strong relation exists if the two synsets are connected by a

valid path in WordNet. A path is considered valid if it is not longer than 5

links and conforms to one of the eight predefined patterns. The relatedness

between two words connected by a medium-strong relation corresponds to

the weight of the path which is given by the following formula:

Weight = C − Pathlength − k · Changesindirection (4.10)

where C and k are constants and, in our case they are assumed to be equal

8 and 1 respectively. The pseudocode below illustrates the algorithm. In

order to compute the relatedness of two concepts first the type of relation

holding between them is determined (line 2). Then the given relation is

compared with existing patterns (line 4).

checkStrongRelationship (line 2) takes in input the two synsets and

returns true if they fulfill one of the requirements of Strong relations. False

otherwise.

getMedStrongWeight (line 4) takes in input two synsets and three zero

values, that are respectively defined as state, distance and chdir, and
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Algorithm 6 The pseudo code of Hirst-St.Onge matcher

1. float match( Synset synset1, Synset synset2 )
2. if ( checkStrongRelationship( synset1, synset2 ))
3. return 2*C;
4. int weight = getMedStrongWeight( 0, 0, 0, synset1, synset2 );
5. return weight;

returns the weight as stated in the above formula. Basically it searches

recursively for a path from synset1 to synset2, taking trace of the dis-

tance, changes in direction (chdir) so far and giving the state value for

the next call. There are 8 possible states (from 0 to 7) in which the func-

tion may find itself, every state defines the rules the path has to follow.

In particular, they specify the categories of links used in the last iteration,

the ones that are allowed in the current step and the ones to use as next,

taking into account the possible changes in direction.

This measure has a lower bound of 0 and an upper bound of 16.

Table 4.12 illustrates Hirst-St.Onge matcher results with 4.0 threshold.

Table 4.12: Semantic relations produced by Hirst-St.Onge matcher
Source synset Target synset Semantic relation

school private school =
actor actress =
dog cat Idk
sky atmosphere Idk

4.4.12 Context Vectors Matcher

Context Vectors Matcher is a knowledge based matcher. It exploits context

vectors semantic similarity measure. It returns ≡ if the measure exceeds

the given threshold and Idk otherwise. This measure is based on context

vector notion introduced by Schütze in [128]. Originally exploited for word

sense disambiguation context vectors was adapted for semantic similarity
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computation exploiting WordNet in [121].

The context vectors computation process starts from selection of the

highly topical words which will define the dimensions of our word space.

For our experiments we used WordNet glosses as a corpus. We stemmed

all the words in the glosses and filtered out the function words. Then we

counted the frequencies of the words in the corpus. Then we cut off the

words with frequencies lower then 5 and higher then 1000. This allowed us

to keep the most informative words. We also added a tf-idf 7 cutoff with an

upper bound of 1500. This allowed to perform additional filtering of the

frequent words. Further we will call the remaining words content words.

Afterwards we have created word vectors for all content words w as

follows:

1. Initialize a vector ~w to zero

2. Find every occurrence of w in WordNet glosses

3. For each occurrence, search that gloss for words in the word space and

increment the dimensions of ~w that correspond to those words.

The basic idea here is to have a matrix of word vectors, where every

row corresponds to a word in the content words list and every column

corresponds to the respective frequencies of each word in the word space.

The final step is to calculate gloss vectors for every synset in WordNet,

this is done by adding the word vectors for each content word in the gloss.

For example, if we want the gloss vector of clock we have to consider its

gloss: a timepiece that shows the time of day and add the word vectors of

timepiece, shows, time and day. Notice that this is a simplified example

because for our experiments we use extended glosses, thus we had to take

7tf-idf is a weight used to evaluate how important a word is to a document (or gloss in our case).
The formula we used is tfidf = tf · ln (idf); where tf is the frequency of occurence of the word and
idf = nr.documents

docFrequency
. For our experiments nr.documents is the number of glosses and docFrequency is the

number of glosses in which our word appears.
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into account also the glosses of every concept connected to clock by a

WordNet relation.

As soon as gloss vectors are calculated they are stored in database and

the preprocessing phase is finished.

Semantic similarity of two synsets is defined as follows

simcv(c1, c2) = cos(angle(~v1, ~v2)) (4.11)

where c1 and c2 are the concepts, ~v1 and ~v2 are the respective gloss vectors

and angle is the angle between vectors. This formula can be rewritten

using vector products, it becomes:

simcv(c1, c2) =
~v1 · ~v2

|v1| |v2|
(4.12)

where at the denominator we have the magnitude8 of the two vectors. It

is a dot product9 between two normalized vectors.

Figure 4.3 illustrates context vectors similarity in 2 dimensional space.

The pseudo code of context vector semantic similarity computation al-

gorithm is as follows:

Algorithm 7 The pseudo code of context vector semantic similarity computation

1. float match( Synset synset1, Synset synset2 )
2. int glossVec1[] = loadGlossVector( synset1 );
3. int glossVec2[] = loadGlossVector( synset2 );
4. float normVec1[] = normalizeVec( glossVec1 );
5. float normVec1[] = normalizeVec( glossVec1 );
6. return dotProduct( normVec1, normVec2 );

loadGlossVector (line 2-3) loads, from database, the precomputed

gloss vector for the given synset.

normalizeVec (line 4-5) calculates the normalized form of the given vec-

8the magnitude of vector ~v is equal to
√∑n

i=1 v2
i

9the dot product between vector ~v and vector ~w is ~v · ~w =
∑n

i=1 viwi
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Figure 4.3: An example of a 2-dimensional space for Word and Gloss vectors for ”cat -
feline mammal usually having thick soft fur and being unable to roar” synset

tor.

dotProduct (line 6) return the dot product between two given vectors.

The measure has a lower bound of 0 and an upper bound of 1.

Table 4.13 illustrates context vectors matcher results with 0.3 threshold.

Table 4.13: Semantic relations produced by context vectors matcher
Source synset Target synset Semantic relation

autograph signature =
actor actress =
robot android =
fruit glass Idk

4.4.13 WordNet gloss

WordNet gloss is a gloss based matcher. It compares the labels of the

first input sense with the WordNet gloss of the second. First, it extracts

the labels of the first input sense from WordNet. Then, it computes the
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number of their occurrences in the second gloss. If this number exceeds a

given threshold, ⊑ is returned. Otherwise, Idk is produced.

The reason why the less general relation is returned comes from the

lexical structure of the WordNet gloss. Very often the meaning of the index

words is explained through a specification of the more general concept.

In the following example, hound (any of several breeds of dog used for

hunting typically having large drooping ears) hound is described through

the specification of the more general concept dog. In this example hound

is a dog with special properties (large drooping ears, used for hunting).

Counting the label occurrences in the gloss does not give a strong ev-

idence of what relation holds between concepts. For example, WordNet

gloss returns the less general relation for hound and ear in the abovemen-

tioned example, which is clearly wrong.

Table 4.14 illustrates WordNet gloss matcher results.

Table 4.14: Semantic relations produced by WordNet gloss matcher
Source synset Target synset Semantic relation

hound dog ⊑
hound ear ⊑
dog car Idk

4.4.14 WordNet extended gloss

WordNet extended gloss is a gloss based matcher. It compares the labels of

the first input sense with the extended gloss of the second. This extended

gloss is obtained from the input sense descendants (ancestors) descriptions

in the is-a (part-of) WordNet hierarchy. A given threshold determines the

maximum allowed distance between these descriptions and the input sense

in the WordNet hierarchy. By default, only direct descendants (ancestors)

are considered. The idea of using extended gloss originates from [7]. Unlike

[7], we do not calculate the extended gloss overlaps measure, but count the
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number of first input sense labels occurrences in the extended gloss of the

second input sense. If this number exceeds a given threshold, a semantic

relation is produced. Otherwise, Idk is returned. The type of relation

produced depends on the glosses we use to build the extended gloss. If

the extended gloss is built from descendant (ancestor) glosses, then the ⊒

( ⊑) relation is produced. For example, the relation holding between the

words dog and breed can be easily found by this matcher. These concepts

are not related in WordNet, but the word breed occurs very often in the

dog descendant glosses.

Table 4.15 illustrates WordNet extended gloss matcher results.

Table 4.15: Semantic relations produced by WordNet extended gloss matcher
Source synset Target synset Semantic relation

dog breed ⊒
wheel mashinery ⊑
dog cat Idk

4.4.15 Gloss comparison

Gloss comparison is a gloss based matcher. Within the matcher the number

of the same words occurring in the two input glosses increases the similarity

value. The equivalence relation is returned if the resulting similarity value

exceeds a given threshold. Idk is produced otherwise.

Let us try to find the relation holding, for example, between Afghan

hound and Maltese dog using gloss comparison strategy. These two con-

cepts are breeds of dog, but unfortunately WordNet does not have explicit

relation between them. However, the glosses of both concepts are very

similar. Let us compare:

Maltese dog is a breed of toy dogs having a long straight silky white coat.

And:

74



CHAPTER 4. S-MATCH ALGORITHM 4.4. STEP 3: LABEL MATCHING

Afghan hound is a tall graceful breed of hound with a long silky coat;

native to the Near East.

There are 4 shared words in both glosses (breed, long, silky, coat). Hence,

the two concepts are taken to be equivalent. Table 4.16 illustrates gloss

comparison matcher results. Several modifications of this matcher exist.

Table 4.16: Semantic relations produced by gloss comparison matcher
Source synset Target synset Semantic relation
Afghan hound Maltese dog =

dog cat Idk

One can assign a higher weight to the phrases or particular parts of speech

than single words [120]. In the current implementation we have exploited

the approach used in [120], but changed the output to be a semantic rela-

tion.

4.4.16 Extended Gloss comparison

Extended gloss comparison is a gloss based matcher. It compares two

extended glosses built from the input senses. Thus, if the first gloss has

a lot of words in common with descendant glosses of the second then the

first sense is more general than the second and vice versa. If the corpuses

(extended glosses) formed from descendant (ancestor) glosses of both labels

have a lot of words in common (this value is controlled by a given threshold)

then the equivalence relation is returned. For example, dog and cat are not

connected by any relation in WordNet. Comparing the corpuses obtained

from descendants glosses of both concepts we can find a lot of words in

common (breed, coat, etc). Thus, we can infer that dog and cat are related

(they are both pets), and return the equivalence relation. The relations

produced by the matcher are summarized in Table 4.17.
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Table 4.17: Semantic relations produced by extended gloss comparison matcher
Source synset Target synset Semantic relation

house animal Idk
dog cat =

4.4.17 Semantic Gloss comparison

Semantic Gloss comparison is a gloss based matcher. The key idea is to

maintain statistics not only for the same words in the input senses glosses

(like in Gloss comparison) but also for words which are connected through

is-a (part-of) relationships in WordNet. This can help finding the gloss

relevance not only at the syntactic but also at the semantic level. In

Semantic Gloss Comparison we consider synonyms, less general and more

general concepts which (hopefully) lead to better results.

In the first step the glosses of both senses are obtained. Then, they are

compared by checking which relations hold in WordNet between the words

of both glosses. If there is a sufficient amount (in the current implemen-

tation this value is controlled by a threshold) of synonyms the equivalence

relation is returned. In the case of a large amount of more (less) general

words, the output is ⊒ (⊑ ) correspondingly. Idk is returned if we have a

nearly equal amount of more and less general words in the glosses or there

are no relations between words in glosses. Table 4.18 contains the results

produced by semantic gloss comparison matcher.

Table 4.18: Semantic relations produced by extended gloss comparison matcher
Source synset Target synset Semantic relation

dog breed ⊒
dog cat Idk

wheel machinery ⊑
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4.4.18 The label matching algorithm

The pseudo code implementing Step 3 is presented as Algorithm 8. The

label matching algorithm produces (with the help of matchers of Table 4.1)

a matrix of relations between all the pairs of atomic concepts of labels from

both trees.

Algorithm 8 Label matching pseudo code

700. String[ ][ ] fillCLabMatrix(Tree of Nodes source,target);
710. String[ ][ ] cLabsMatrix;
720. String[ ] matchers;
730. int i, j;
740. matchers=getMatchers();
750. for each sourceAtomicConceptOfLabel ∈ source
760. i=getACoLID(sourceAtomicConceptOfLabel);
770. for each targetAtomicConceptOfLabel ∈ target
780. j= getACoLID(targetAtomicConceptOfLabel);
790. cLabsMatrix[i][j]=getRelation(matchers,

sourceAtomicConceptOfLa-
bel,targetAtomicConceptOfLabel);
795. return cLabsMatrix;

800. String getRelation(String[ ] matchers, AtomicConceptOfLabel source, target)
810. String matcher;
820. String relation=“Idk”;
830. int i=0;
840. while ((i<sizeof(matchers))&&(relation==“Idk”))
850. matcher= matchers[i];
860. relation=executeMatcher(matcher,source,target);
870. i++;
880. return relation;

fillCLabMatrix takes as input two trees of nodes. It produces as output

the matrix of semantic relations holding between the atomic concepts of

labels in both trees. First, the element level matchers of Table 4.1, which

are to be executed (based on the configuration settings), are acquired in line

740. Then, for each pair of atomic concepts of labels in both trees, semantic

relations holding between them are determined by using the getRelation
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function (line 790).

getRelation takes as input an array of matchers and two atomic con-

cepts of labels. It returns the semantic relation holding between this pair

of atomic concepts of labels according to the element level matchers. These

label matchers are executed (line 860) until the semantic relation differ-

ent from Idk is produced. Notice that execution order is defined by the

matchers array.

The result of Step 3 is a matrix of the relations holding between atomic

concepts of labels. A part of this matrix for the example in Figure 4.1 is

shown in Table 4.19.

Table 4.19: ClabsMatrix matrix of semantic relations holding between concepts of labels.

B Classes History Modern Europe
A
Courses = idk idk idk
History idk = idk idk
Medieval idk idk ⊥ idk
Asia idk idk idk ⊥

4.5 Step 4: Node Matching

During this step, we initially reformulate the tree matching problem into

a set of node matching problems (one problem for each pair of nodes).

Finally, we translate each node matching problem into a propositional va-

lidity problem. Let us first discuss in detail the tree matching algorithm.

Then, we consider the node matching algorithm.

4.5.1 Tree matching algorithm

The tree matching algorithm is concerned with decomposition of the tree

matching task into a set of node matching tasks. It takes as input two
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preprocessed trees obtained as a result of Steps 1,2 and a matrix of seman-

tic relations holding between the atomic concepts of labels in both trees

obtained as a result of Step 3. It produces as output the matrix of seman-

tic relations holding between concepts at nodes in both trees. The pseudo

code in Algorithm 9 illustrates the tree matching algorithm.

Algorithm 9 The pseudo code of the tree matching algorithm

900. String[ ][ ] treeMatch(Tree of Nodes source, target, String[ ][ ] cLabsMatrix)
910. Node sourceNode,targetNode;
920. String[ ][ ] cNodesMatrix, relMatrix;
930. String axioms, contextA, contextB;
940. int i,j;
960. for each sourceNode ∈ source
970. i=getNodeId(sourceNode);
980. contextA=getCnodeFormula(sourceNode);
990. for each targetNode ∈ target
1000. j=getNodeId(targetNode);
1010. contextB=getCnodeFormula(targetNode);
1020. relMatrix=extractRelMatrix(cLabsMatrix, sourceNode, targetNode);
1030. axioms=mkAxioms(relMatrix);
1040. cNodesMatrix[i][j]=nodeMatch(axioms, contextA, contextB);
1050. return cNodesMatrix;

treeMatch takes two trees of Nodes (source and target) and the matrix

of relations holding between atomic concepts of labels (cLabsMatrix ) as

input. It starts from two loops over all the nodes of source and target

trees in lines 960-1040 and 990-1040. The node matching problems are

constructed within these loops. For each node matching problem we take

a pair of propositional formulas encoding concepts at nodes and relevant

relations holding between the atomic concepts of labels using the getCn-

odeFormula and extractRelMatrix functions respectively. The former are

memorized as contextA and contextB in lines 980 and 1010. The latter

are memorized in relMatrix in line 1020. In order to reason about rela-

tions between concepts at nodes, we build the premises (axioms) in line

1030. These are a conjunction of the concepts of labels which are related
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in relMatrix. For example, the semantic relations in Table 4.19, which

are considered when we match C4 in the tree A and C4 in the tree B are

ClassesB ≡ CoursesA and HistoryB ≡ HistoryA. In this case axioms is

(ClassesB ↔ CoursesA) ∧ (HistoryB ↔ HistoryA). Finally, in line 1040,

the semantic relations holding between the concepts at nodes are calculated

by nodeMatch and are reported as a bidimensional array (cNodesMatrix ).

A part of this matrix for the example in Figure 4.1 is shown in Table 4.20.

Table 4.20: cNodesMatrix : matrix of relations among the concepts at nodes (matching
result).

B C1 C4 C14 C17

A
C1 = ⊒ ⊒ ⊒
C4 ⊑ = ⊒ ⊒
C12 ⊑ ⊑ ⊥ ⊥
C16 ⊑ ⊑ ⊥ ⊥

4.5.2 Node matching algorithm

Each node matching problem is converted into a propositional validity

problem. Semantic relations are translated into propositional connectives

using the rules described in Table 4.21 (second column).

Table 4.21: The relationship between semantic relations and propositional formulas.

rel(a, b) Translation of rel(a, b) into Translation of formula (4.13)
propositional logic into Conjunctive Normal Form

a = b a ↔ b N/A
a ⊑ b a → b axioms ∧ contextA ∧ ¬contextB
a ⊒ b b → a axioms ∧ contextB ∧ ¬contextA
a⊥b ¬(a ∧ b) axioms ∧ contextA ∧ contextB

The criterion for determining whether a relation holds between concepts
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of nodes is the fact that it is entailed by the premises. Thus, we have to

prove that the following formula:

axioms −→ rel(contextA, contextB) (4.13)

is valid, namely that it is true for all the truth assignments of all the

propositional variables occurring in it. axioms, contextA, and contextB

are the same as they were defined in the tree matching algorithm. rel is

the semantic relation that we want to prove holding between contextA and

contextB. The algorithm checks the validity of Eq. 4.13 by proving that

its negation, i.e., Eq. 4.14, is unsatisfiable.

axioms ∧ ¬rel(contextA, contextB) (4.14)

Table 4.21 (third column) describes how Eq. 4.14 is translated before

testing each semantic relation. Notice that Eq. 4.14 is in Conjunctive

Normal Form (CNF), namely it is a conjunction of disjunctions of atomic

formulas. The check for equivalence is omitted in Table 4.21, since A = B

holds if and only if A ⊑ B and A ⊒ B hold, i.e., both axioms∧ contextA∧

¬contextB and axioms∧ contextB ∧¬contextA are unsatisfiable formulas.

We assume the labels of nodes and the knowledge derived from element

level semantic matchers to be all globally consistent. Under this assump-

tion the only reason why we get an unsatisfiable formula is because we have

found a match between two nodes. In fact, axioms cannot be inconsistent

by construction. Consistency of contextA and contextB is checked in the

preprocessing phase (see, Section 4.3 for details). However, axioms and

contexts (for example, axioms ∧ contextA) can be mutually inconsistent.

The situation occurs, for example, when axioms entails negation of the

variable occurring in the context. In this case, the concepts at nodes are

disjoint. In order to guarantee the correct behavior of the algorithm we
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perform the disjointness test first. It does not influence the algorithm cor-

rectness in general but allow us to obtain the correct result in this special

case.

Let us consider the pseudo code of a basic node matching algorithm,

see Algorithm 10. In line 1110, nodeMatch constructs the formula for

testing disjointness. In line 1120, it converts the formula into CNF, while

in line 1130 it checks the CNF formula for unsatisfiability. If the formula

is unsatisfiable the disjointness relation is returned.

Then, the process is repeated for the less and more general relations. If

both relations hold, then the equivalence relation is returned (line 1220).

If all the tests fail, the idk relation is returned (line 1280). In order to

check the unsatisfiability of a propositional formula in a basic version of

our NodeMatch algorithm we use the standard DPLL-based SAT solver

[79].

Algorithm 10 The pseudo code of the node matching algorithm

1100. String nodeMatch(String axioms, contextA, contextB)
1110. formula= And(axioms, contextA, contextB);
1120. formulaInCNF=convertToCNF(formula);
1130. boolean isOpposite=isUnsatisfiable(formulaInCNF);
1140. if (isOpposite)
1150. return “⊥”;
1160. String formula=And(axioms, contextA, Not(contextB));
1170. String formulaInCNF=convertToCNF(formula);
1180. boolean isLG=isUnsatisfiable(formulaInCNF)
1190. formula=And(axioms, Not(contextA), contextB);
1200. formulaInCNF=convertToCNF(formula);
1210. boolean isMG= isUnsatisfiable(formulaInCNF);
1220. if (isMG && isLG)
1230. return “=”;
1240. if (isLG)
1250. return “⊑”;
1260. if (isMG)
1270. return “⊒”;
1280. return “Idk”;
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From the example in Figure 4.1, trying to prove that C4 in the tree B

is less general than C4 in the tree A, requires constructing the following

formula:

((ClassesB ↔ CoursesA) ∧ (HistoryB ↔ HistoryA))∧

(ClassesB ∧ HistoryB) ∧ ¬(CoursesA ∧ HistoryA)

The above formula turns out to be unsatisfiable, and therefore, the less

general relation holds. Notice, if we test for the more general relation be-

tween the same pair of concepts at nodes, the corresponding formula would

be also unsatisfiable. Thus, the final relation returned by the NodeMatch

algorithm for the given pair of concepts at nodes is the equivalence.

4.6 Summary

In this chapter we have identified semantic matching as the new approach

for performing generic matching. We discussed the key notions of the

approach. Then, the main four macro steps of the semantic matching a

algorithm has been presented and described with the help of examples and

pseudo-code.
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Chapter 5

Efficient

semantic matching

The node matching problem in semantic matching is a CO-NP hard prob-

lem, since it is reduced to the validity problem for the propositional calcu-

lus. In this chapter we present a set of optimizations for the node matching

algorithm. In particular, we show that when dealing with conjunctive con-

cepts at nodes, i.e., the concept at node is a conjunction (e.g., C7 in the

tree A in Figure 4.1 is defined as AsianA ∧LanguagesA), the node match-

ing tasks can be solved in linear time. When we have disjunctive concepts

at nodes, i.e., the concept at node contains both conjunctions and dis-

junctions in any order (e.g., C3 in the tree B in Figure 4.1 is defined as

CollegeB ∧ (ArtsB ∨ SciencesB)), we use techniques allowing us to avoid

the exponential space explosion which arises due to the conversion of dis-

junctive formulas into CNF. This modification is required since all state of

the art SAT deciders take CNF formulas in input.

Material presented in this chapter has been developed in collaboration

with Enrico Giuchiglia and published in [63, 64].

In this chapter we discuss the optimizations for the matching problems

involving conjunctive (§5.1) and disjunctive (§5.2) concepts at nodes.
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5.1 Conjunctive concepts at nodes

Let us make some observations with respect to Table 4.21 (Section 4.5.2).

The first observation is that the axioms part remains the same for all the

tests, and it contains only clauses with two variables. In the worst case, it

contains 2 × nA × nB clauses, where nA and nB are the number of atomic

concepts of labels occurred in contextA and contextB, respectively. The

second observation is that the formulas for testing less and more general

relations are very similar and they differ only in the negated context for-

mula (e.g., in the test for less general relation contextB is negated). This

means that Eq. 4.14 contains one clause with nB variables plus nA clauses

with one variable. In the case of disjointness test contextA and contextB

are not negated. Therefore, formula Eq. 4.14 contains nA + nB clauses

with one variable.

5.1.1 The node matching problem by an example

Let us suppose that we want to match C16 in the tree A and C17 in the tree

B in Figure 4.1. The relevant semantic relations between atomic concepts

of labels are presented in Table 4.19. Thus, axioms is as follows:

(courseA ↔ classB) ∧ (historyA ↔ historyB)∧

¬(medievalA ∧ modernB) ∧ ¬(asiaA ∧ europeB)
(5.1)

which, when translated in CNF, becomes:

(¬courseA ∨ classB) ∧ (courseA ∨ ¬classB) ∧ (¬historyA ∨ historyB)∧

(historyA ∨ ¬historyB) ∧ (¬medievalA ∨ ¬modernB) ∧ (¬asiaA ∨ ¬europeB)

(5.2)
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As from Step 2, contextA and contextB are constructed by taking the

conjunction of the concepts of labels in the path from the node under

consideration to the root. Therefore, contextA and contextB are:

courseA ∧ historyA ∧ medievalA ∧ asiaA (5.3)

classB ∧ historyB ∧ modernB ∧ europeB (5.4)

while their negations are:

¬courseA ∨ ¬historyA ∨ ¬medievalA ∨ ¬asiaA (5.5)

¬classB ∨ ¬historyB ∨ ¬modernB ∨ ¬europeB (5.6)

So far we have concentrated on atomic concepts of labels. The propo-

sitional formulas remain structurally the same if we move to conjunctive

concepts at labels. Let consider the following example:

Figure 5.1: Two simple classifications (obtained by modifying, pruning the example in
Figure 4.1)

Suppose we want to match C2 in the tree A and C2 in the tree B in Fig-

ure 5.1. Axioms required for this matching task are as follows: (courseA ↔

classB) ∧ (historyA ↔ historyB) ∧ (medievalA ⊥ modernB) ∧ (asiaA ⊥

europeB). If we compare them with those of Eq. 5.1 and Eq. 5.2, which

represent axioms for the above considered example in Figure 4.1, we find

out that they are the same. Furthermore, as from Step 2, the proposi-

tional formulas for contextA and contextB are the same for atomic and for

conjunctive concepts of labels as long as they ”globally” contain the same
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formulas. In fact, concepts at nodes are constructed by taking the conjunc-

tion of concepts at labels. Splitting a concept of a label with two conjuncts

into two atomic concepts has no effect on the resulting matching formula.

The matching result for the matching tasks in Figure 5.1 is presented in

Table 5.1.

Table 5.1: The matrix of relations between concepts at nodes (matching result) for Fig-
ure 5.1.

B C1 C2

A
C1 = ⊒
C2 ⊑ ⊥

5.1.2 Optimizations

Tests for less and more general relations.

Using the observations in the beginning of Section 5.1 concerning Table

4.21, Eq. 4.14, with respect to the tests for less/more general relations,

can be represented as follows:

Axioms
︷ ︸︸ ︷
n∗m∧

0
(¬As∨Bt)∧

n∗m∧

0
(Ak∨¬Bl)∧

n∗m∧

0
(¬Ap∨¬Br)∧

ContextA
︷︸︸︷

n∧

i=1

Ai ∧

¬ContextB
︷ ︸︸ ︷
m∨

j=1

¬Bj (5.7)

where n is the number of variables in contextA, m is the number of

variables in contextB. The Ai’s belong to contextA, and the Bj’s belong

to contextB. s, k, p are in the [0..n] range, while t, l, r are in the [0..m]

range. q, w and v define the number of particular clauses. Axioms can

be empty. Eq. 5.7 is composed of clauses with one or two variables plus

one clause with possibly more variables (the clause corresponding to the

negated context). The key observation is that the formula in Eq. 5.7 is

Horn, i.e., each clause contains at most one positive literal. Therefore, its
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satisfiability can be decided in linear time by the unit resolution rule [28].

Notice, that DPLL-based SAT solvers require quadratic time in this case

[134].

In order to understand how the linear time algorithm works, let us prove

the unsatisfiability of Eq. 5.7 in the case of matching C16 in the tree A

and C17 in the tree B in Figure 4.1. In this case, Eq. 5.7 is as follows:

(¬courseA ∨ classB) ∧ (courseA ∨ ¬classB) ∧ (¬historyA ∨ historyB)∧

(historyA ∨ ¬historyB) ∧ (¬medievalA ∨ modernB) ∧ (¬asiaA ∨ ¬europeB)∧

courseA ∧ historyA ∧medievalA ∧ asiaA∧

(¬classB ∨ ¬historyB ∨ ¬modernB ∨ ¬europeB)

(5.8)

In Eq. 5.8, the variables from contextA are written in bold face. First,

we assign true to all unit clauses occurring in Eq. 5.8 positively. Notice

these are all and only the clauses in contextA. This allows us to discard the

clauses where contextA variables occur positively (in this case: courseA ∨

¬classB, historyA ∨ ¬historyB). The resulting formula is as follows:

classB ∧ historyB ∧ ¬modernB ∧ ¬europeB∧

(¬classB ∨ ¬historyB ∨ ¬modernB ∨ ¬europeB)
(5.9)

Eq. 5.9 does not contain any variable derived from contextA. Notice

that, by assigning true to classB, historyB and false to modernB, europeB

we do not derive a contradiction. Therefore, Eq. 5.8 is satisfiable. In fact,

a (Horn) formula is unsatisfiable if and only if the empty clause is derived

(and it is satisfiable otherwise). Let us consider again Eq. 5.9. For this

formula to be unsatisfiable, all the variables occurring in the negation of

contextB ( classB ∨ ¬historyB ∨ ¬modernB ∨ ¬europeB in our example)

89



5.1. CONJUNCTIVE CONCEPTS AT NODES
CHAPTER 5. EFFICIENT

SEMANTIC MATCHING

should occur positively in the unit clauses obtained after resolving axioms

with the unit clauses in contextA (classB and historyB in our example).

For this to happen, for any Bj in contextB there must be a clause of form

¬Ai ∨ Bj in axioms, where Ai is a formula of contextA. Formulas of the

form ¬Ai ∨ Bj occur in Eq. 5.7 if and only if we have the axioms of

form Ai ≡ Bj and Ai ⊑ Bj. These considerations suggest the following

algorithm for testing satisfiability:

• Step 1. Create an array of size m. Each entry in the array stands for

one Bj in Eq. 5.7.

• Step 2. For each axiom of type Ai ≡ Bj and Ai ⊑ Bj mark the

corresponding Bj.

• Step 3. If all the Bj’s are marked, then the formula is unsatisfiable.

Disjointness test.

Using the same notation as before in this section, Eq. 4.14 with respect to

the disjointness test can be represented as follows:

Axioms
︷ ︸︸ ︷
n∗m∧

q=0
(¬As∨Bt)∧

n∗m∧

w=0
(Ak∨¬Bl)∧

n∗m∧

v=0
(¬Ap∨¬Br)∧

ContextA
︷︸︸︷

n∧

i=1

Ai ∧

ContextB
︷︸︸︷
m∧

j=1

Bj (5.10)

For example, the formula for testing disjointness between C16 in the tree

A and C17 in the tree B in Figure 4.1 is as follows:

(¬courseA ∨ classB) ∧ (courseA ∨ ¬classB) ∧ (¬historyA ∨ historyB)∧

(historyA ∨ ¬historyB) ∧ (¬medievalA ∨ modernB) ∧ (¬asiaA ∨ ¬europeB)∧

courseA ∧ historyA ∧medievalA ∧ asiaA∧

classB ∧ historyB ∧ modernB ∧ europeB

(5.11)
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Eq. 5.11 is Horn, and thus, similarly to Eq. 5.8, the satisfiability of this

formula can be decided by the unit propagation rule. After assigning true

to all the variables in contextA and propagating the results we obtain the

following formula:

classB ∧ historyB ∧ ¬modernB ∧ ¬europeB∧

classB ∧ historyB ∧ modernB ∧ europeB

(5.12)

If we further unit propagate classB and historyB (this means that

we assign them to true), then we obtain the contradiction modernB ∧

¬modernB ∧ europeB ∧ ¬europeB. Therefore, the formula is unsatisfi-

able. This contradiction arises because (¬medievalA ∨ ¬modernB) and

(¬asiaA ∨ ¬europeB) occur in Eq. 5.11, which, in turn, are derived (as

from Table 4.21) from the disjointness axioms modernB ⊥ medievalA and

asiaA ⊥ europeB. In fact, all the clauses in Eq. 5.10 contain one posi-

tive literal except for the clauses in axioms corresponding to disjointness

relations. Thus, the key intuition here is that if there are no disjointness

axioms, then Eq. 5.10 is satisfiable. However, if there is a disjointness

axiom, atoms occurring there are also ensured to be either in contextA or

in contextB, hence, Eq. 5.10 is unsatisfiable. Therefore, the optimization

consists of just checking the presence/absence of disjointness axioms in

axioms.

5.2 Disjunctive concepts at nodes

5.2.1 The node matching problem by an example

Now, we allow for the concepts at nodes to contain conjunctions and dis-

junctions in any order. Suppose, we want to match C5 in the tree A and

C5 in the tree B in Figure 4.1. The relevant part of cLabsMatrix is shown
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in Table 5.2.

Table 5.2: cLabsMatrix: matrix of relations among the atomic concepts of labels.

B Classes Mechanics Optics Statistics Dynamics Kinematics
A
Courses = idk idk idk idk idk
Biology idk idk idk idk idk idk
Zoology idk idk idk idk idk idk
Botany idk idk idk idk idk idk
Neurobiology idk idk idk idk idk idk
Genetics idk idk idk idk idk idk
Physiology idk idk idk idk idk idk

As from Table 4.21, the axioms is as follows:

(courseA ↔ classB) (5.13)

Eq. 5.13 in CNF then becomes:

(¬courseA ∨ classB) ∧ (courseA ∨ ¬classB) (5.14)

As from Step 2, contextA and contextB are:

classB ∧ (mechanicsB ∨ opticsB ∨ thermodynamicsB)∧

(staticsB ∨ dynamicsB ∨ kinematicsB)
(5.15)

courseA ∧ (biologyA ∨ zoologyA ∨ botanyA)∧

(neurobiologyA ∨ geneticsA ∨ physiologyA)
(5.16)

The negations of contextA and contextB, in turn, are:
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¬classB ∨ (¬mechanicsB ∧ ¬opticsB ∧ ¬thermodynamicsB)∨

(¬staticsB ∧ ¬dynamicsB ∧ ¬kinematicsB)
(5.17)

¬courseA ∨ (¬biologyA ∧ ¬zoologyA ∧ ¬botanyA)∨

(¬neurobiologyA ∧ ¬geneticsA ∧ ¬physiologyA)
(5.18)

The matching result for this task is presented in Table 5.3.

Table 5.3: cNodesMatrix : matrix of relations among the concepts at nodes (matching
result).

B C1 C2 C5

A
C1 = idk idk
C2 idk idk idk
C5 idk idk idk

5.2.2 Optimizations

As from Table 4.21, axioms is the same for all the tests. However, contextA

and contextB may contain any number of disjunctions. Some of them

are coming from the concepts of labels, while others may appear from

the negated contextA or contextB (e.g., see tests for less/more general

relations). Thus, for instance, as from Table 4.21 in case of test for less

general relation we obtain the following formula:
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(¬courseA ∨ classB) ∧ (courseA ∨ classB) ∧ (mechanicsB ∨ opticsB∨

thermodynamicsB) ∧ (staticsB ∨ dynamicsB ∨ kinematicsB) ∧ ((¬biologyA∧

¬zoologyA ∧ ¬botanyA) ∨ (¬neurobiologyA ∧ ¬geneticsA ∧ ¬physiologyA))

(5.19)

With disjunctive concepts at nodes, Eq. 4.14 is a full propositional

formula and no hypothesis can be made on its structure. As a consequence,

its satisfiability must be tested using a standard DPLL SAT solver. Thus,

for instance, CNF conversion of Eq. 5.19 is as follows:

(¬courseA ∨ classB) ∧ (courseA ∨ classB)∧

(mechanicsB ∨ opticsB ∨ thermodynamicsB)∧

(staticsB ∨ dynamicsB ∨ kinematicsB)∧

((¬courseA ∨ ¬biologyA ∨ ¬neurobiologyA)∧

(¬courseA ∨ ¬biologyA ∨ ¬geneticsA)∧

(¬courseA ∨ ¬biologyA ∨ ¬physiologyA)∧

(¬courseA ∨ ¬zoologyA ∨ ¬neurobiologyA)∧

(¬courseA ∨ ¬zoologyA ∨ ¬geneticsA)∧

(¬courseA ∨ ¬zoologyA ∨ ¬physiologyA)∧

(¬courseA ∨ ¬botanyA ∨ ¬neurobiologyA)∧

(¬courseA ∨ ¬botanyA ∨ ¬geneticsA)∧

(¬courseA ∨ ¬botanyA ∨ ¬physiologyA))

(5.20)

In order to avoid the space explosion, which may arise when converting

a formula into CNF (see for instance Eq. 5.20), we apply a set of structure

preserving transformations [122, 53]. The main idea is to replace disjunc-
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tions occurring in the original formula with newly introduced variables and

explicitly state that these variables imply the subformulas they substitute.

Consider for instance Eq. 5.19. We obtain:

(¬courseA ∨ classB) ∧ (courseA ∨ classB)∧

(mechanicsB ∨ opticsB ∨ thermodynamicsB)∧

(staticsB ∨ dynamicsB ∨ kinematicsB)∧

new1 ∧ new2 ∧ (new1 → ¬biologyA ∨ ¬zoologyA ∨ ¬carA)∧

(new2 → ¬neurobiologyA ∨ ¬geneticsA ∨ ¬physiologyA)

(5.21)

where new1 and new2 stand for newly introduced variables. Eq. 5.16 is

converted into CNF as follows:

(¬courseA ∨ classB) ∧ (courseA ∨ classB)∧

(mechanicsB ∨ opticsB ∨ thermodynamicsB)∧

(staticsB ∨ dynamicsB ∨ kinematicsB)∧

new1 ∧ new2 ∧ (¬new1 ∨ ¬biologyA ∨ ¬zoologyA ∨ ¬carA)∧

(¬new2 ∨ ¬neurobiologyA ∨ ¬geneticsA ∨ ¬physiologyA)

(5.22)

Notice that the size of the propositional formula in CNF grows linearly

with respect to number of disjunctions in original formula. To account

for this optimization in nodeMatch all calls to convertToCNF are replaced

with calls to optimizedConvertToCNF, (see Algorithm 11):

Algorithm 11 The CNF conversion optimization pseudo code

1120. formulaInCNF=optimizedConvertToCNF(formula);
. . .
1170. formulaInCNF=optimizedConvertToCNF(formula);
. . .
1200. formulaInCNF=optimizedConvertToCNF(formula);
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5.3 Summary

In this chapter we have presented a set of optimizations to the basic se-

mantic matching algorithm and described them with the help of examples

and pseudo-code. The key idea is to apply ad hoc reasoning procedures

when propositional formulas arising in the matching process belong to the

fragments (of propositional logic) for which the more efficient reasoning

algorithms are known.
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Chapter 6

Beyond semantic matching:

structure preserving semantic

matching

This chapter presents the structure preserving semantic matching algo-

rithms. In particular the focus is on exact and approximate structure

preserving matching algorithms. Material presented in this chapter has

been developed in collaboration with Fiona McNeil.

In this chapter we first discuss a motivating scenario for structure pre-

serving semantic matching (§6.1). Section 6.2 is devoted to the exact struc-

ture matching algorithm. In Section 6.3 we define the abstraction opera-

tions and introduce the correspondence between them and tree edit oper-

ations. In Section 6.4 we show how existing tree edit distance algorithms

can be exploited for the computation of the global similarity between two

web service descriptions. Section 6.5 is devoted to approximate structure

matching algorithm.
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6.1 A Motivating Example

Figure 6.1 provides an example of exactly matched web service descriptions

along with their tree representations (or term trees). Dashed lines stand

for the correspondences holding among the nodes of the term trees.

Figure 6.1: Exactly matched web service descriptions and their tree representations.

In particular, in Figure 6.1 we have an exact match, namely the first of

the services requires the second to return Cars of a given Brand, Year and

Color while the other provides Autos of a given Brand, Year and Color.

Notice that, there are no structural differences and that the only difference

is in the function names.

Figure 6.2: Approximately matched web service descriptions and their tree representa-
tions.

Consider now Figure 6.2. It provides an example of an approximate

match. In this case a more sophisticated data translation is required. For
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example, the first web service description requires that the fourth argu-

ment of get Wine function (Color) to be mapped to the second argument

(Colour) of get Wine function in the second description. On the other

hand Region on the right is defined as a function with two arguments

(Country and Area) while on the left Region is an argument of get Wine.

Thus, Region in the first web service description must be passed to the sec-

ond web service as the value of the Area argument of the Region function.

Moreover Year on the right has no corresponding term on the left.

Therefore, in order to guarantee the successful data translation we are

interested in the correspondences holding among the nodes of the term

trees of the given web service descriptions only in the case when the web

service descriptions themselves are “similar enough”. At the same time the

correspondences have to preserve the certain structural properties of the

descriptions being matched. In particular we require the functions to be

mapped to functions and variables to variables.

6.2 Exact structure semantic matching

There are two stages in the matching process:

• Node matching : solves the semantic heterogeneity problem by consid-

ering only labels at nodes and domain specific contextual information

of the trees. In our approach we use semantic matching as exten-

sively described in §4. Notice that the result of this stage is the set of

correspondences holding between the nodes of the trees.

• Structural tree matching : exploits the results of the node matching and

the structure of the tree to find the correspondences holding between

the trees themselves (e.g., tree1 is 0.7 similar to tree2).

Let us consider the latter.
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The exact structure matching algorithm exploits the results of the node

matching algorithm. It is designed to succeed for equivalent terms and to

fail otherwise. It expects the trees to have the same depth and the same

number of children. More precisely we say that two trees T1 and T2 match

iff for any node n11 in T1 there is a node n21 in T2 such that

• n11 semantically matches n21, which in this case holds iff c@n21 is

equivalent to c@n22 given the available background knowledge, where

c@n1 and c@n2 are the concepts at nodes of n1 and n2;

• n11 and n21 reside on the same depth in T1 and T2, respectively;

• all ancestors of n11 are semantically matched to the ancestors of n21;

The pseudo code in Figure 12 illustrates an algorithm for exact structure

matching.

exactStructureMatch takes two trees of nodes source and target as

an input. exactStructureMatch returns an array of MappingElements

holding between the nodes of the trees if there is an exact match between

them and null otherwise. The array of MappingElements result is created

(line 12) and filled by exactTreeMatch (line 13). allNodesMapped

checks whether all the nodes of source tree are mapped to the nodes of the

target tree (line 14). If this is the case there is an exact structure match

between the trees and the set of computed mappings is returned (line 15).

exactTreeMatch takes two trees of nodes source and target and array

of MappingElements result as an input. It recursively fills result with the

mappings computed by nodeMatch (line 23). exactTreeMatch starts

from obtaining the roots of source and target trees (lines 19-20). The se-

mantic relation holding between them is computed by nodeMatch (line

21) implementing the node matching algorithm. If the relation is equiva-

lence, the corresponding mapping is saved to result array (lines 22-23) and

the children of the root nodes are obtained (line 26-27). Finally the loops
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Algorithm 12 Pseudo code for exact structure matching algorithm

1.Node struct of
2. int nodeId;
3. String label;
4. String cLabel;
5. String cNode;

6.MappingElement struct of
7. int MappingElementId;
8. Node source;
9. Node target;
10. String relation;

11.MappingElement[] exactStructureMatch (Tree of Nodes source,target)
12. MappingElement[] result;
13. exactTreeMatch(source,target,result);
14. if (allNodesMapped(source,target,result))
15. return result;
16. else
17. return null;

18.void exactTreeMatch(Tree of Nodes source,target,MappingElement[] result)
19. Node sourceRoot=getRoot(source);
20. Node targetRoot=getRoot(target);
21. String relation= nodeMatch(sourceRoot,targetRoot);
22. if (relation==”=”)
23. addMapping(result,sourceRoot,targetRoot,”=”);
24. else
25. return;
26. Node[] sourceChildren=getChildren(sourceRoot);
27. Node[] targetChildren=getChildren(targetRoot);
28. For each sourceChild in sourceChildren
29. Tree of Nodes sourceChildSubTree=getSubTree(sourceChild);
30. For each targetNode in target
31. Tree of Nodes targetChildSubTree=getSubTree(targetChild);
32. exactTreeMatch(sourceChildSubTree, targetChildSubTree, nodesToM-
atch);
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on sourceChildren and targetChildren (lines 28-32) allow to call exact-

TreeMatch recursively for all pairs of sub trees rooted at sourceChildren

and targetChildren elements.

6.3 Approximate matching via abstraction/refinement

operations

In [61], Giunchiglia and Walsh categorize the various kinds of abstraction

operations in a wide-ranging survey. They also introduce a new class of

abstractions, called TI-abstractions (where TI means “Theorem Increas-

ing”), which have the fundamental property of maintaining completeness,

while losing correctness. In other words any fact which is true of the

original term is also true of the abstract term, but not viceversa. And

similarly, if a ground formula is true so is the abstract formula, but not

vice versa. Dually, by taking the inverse of each abstraction operation, we

can define a corresponding refinement operation which preserves correct-

ness while loosing completeness. The second fundamental property of the

abstraction operations is that they provide all and only the possible ways

in which two first order terms can be made to differ by manipulations of

their signature, still preserving completeness. In other words, this set of

abstraction/refinement operations defines all and only the possible ways

in which correctness and completeness are maintained when operating on

first order terms and atomic formulas. This is the fundamental property

which allows us to study and consequently quantify the semantic similarity

(distance) between two first order terms. To this extent it is sufficient to

determine which abstraction/refinement operations are necessary to con-

vert one term into the other and to assign to each of them a cost that

models the “semantic distance” associated to the operation.

Giunchiglia and Walsh’s categories are as follows:
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6.3. APPROXIMATE MATCHING VIA ABSTRACTION/REFINEMENT
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Predicate: Two or more predicates are merged, typically to the least gen-

eral generalization in the predicate type hierarchy, e.g.,

Bottle(X) + Container(X) 7→ Container(X).

We call Container(X) a predicate abstraction of Bottle(X) or Container(X) ⊒P

Bottle(X). Conversely we call Bottle(X) a predicate refinement of

Container(X) or Bottle(X) ⊑Pd Container(X).

Domain: Two or more terms are merged, typically by moving the func-

tions (or constants) to the least general generalization in the domain

type hierarchy, e.g.,

Daughter(Me) + Child(Me) 7→ Child(Me).

Acura + Nissan 7→ Nissan.

Similarly to the previous item we call Child(Me) and Nissan a domain

abstractions of Daughter(Me) and Acura respectively or Child(Me) ⊒D

Daughter(Me), Nissan ⊒D Acura. Conversely we call Daughter(Me)

and Acura a domain refinements of Child(Me) and Nissan or Daughter(Me) ⊑D

Child(Me), Acura ⊑D Nissan.

Propositional: One or more arguments are dropped, e.g.,

Bottle(A) 7→ Bottle.

We call Bottle a propositional abstraction of Bottle(A) or Bottle ⊒P

Bottle(A). Conversely Bottle(A) is a propositional refinement of Bot-

tle or Bottle(A) ⊑P Bottle.

Precondition: The precondition of a rule is dropped1 , e.g.,

[Ticket(X) → Travel(X)] 7→ Travel(X).

1Further we do not consider precondition abstraction and refinement as we do not want to drop
preconditions, because this would endanger the successful matchmaking of web services.
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Consider the following pair of first order terms (Bottle A) and (Con-

tainer). In this case there is no abstraction/refinement operation that

make them equivalent. However consequent applications of propositional

and predicate abstraction operations make the two terms equivalent:

(Bottle A) 7→⊑P (Bottle) 7→⊑Pd (Container) (6.1)

In fact the relation holding among the terms is a composition of two re-

finement operations, namely (Bottle A) ⊑P (Bottle) and (Bottle) ⊑Pd

(Container). We define an abstraction mapping element (AME) as a 5-

tuple 〈IDij, t1, t2, R, sim〉, where IDij is a unique identifier of the given

mapping element; t1 and t2 are first order terms; R specifies a relation for

the given terms; and sim stands for a similarity coefficient in the range

[0..1] quantifying the strength of the relation. In particular for the AMEs

we allow the following semantic relations {≡,⊑,⊒}, where ≡ stands for

equivalence; ⊒ represents an abstraction relation and connects the pre-

condition and the result of a composition of arbitrary number of predi-

cate, domain and propositional abstraction operations; and ⊑ represents

a refinement relation and connects the precondition and the result of a

composition of arbitrary number of predicate, domain and propositional

refinement operations.

Therefore, the problem of AME computation becomes a problem of

minimal cost composition of the abstraction/refinement operations allowed

for the given relation R that are necessary to convert one term into the

other. In order to solve this problem we propose to represent abstrac-

tion/refinement operations as tree edit distance operations applied to the

term trees. This allows to redefine the problem of AME computation into

a tree edit distance problem.

In its traditional formulation, the tree edit distance problem considers

three operations: (i) vertex deletion, (ii) vertex insertion, and (iii) vertex
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replacement [132]. Often these operations are presented as rewriting rules:

(i)υ → λ; (ii)λ → υ; (iii)υ → ω; (6.2)

where υ and ω correspond to the labels of nodes in the trees while λ

stands for the special blank symbol. Figure 6.3 illustrates two applications

of delete and replace tree edit operations.

Figure 6.3: Delete and replace tree edit operations

Our proposal is to restrict the formulation of the tree edit distance

problem in order to reflect the semantics of the first order terms. In par-

ticular we propose to redefine the tree edit distance operations in such

a way that will allow them to have one-to-one correspondence to the ab-

straction/refinement operations presented previously in this section. Table

6.1 illustrates the correspondence between abstraction/refinement and tree

edit operations. The first column presents the abstraction/refinement op-

Table 6.1: The correspondence between abstraction/refinement operations and tree edit
operations.

Abstraction/ Tree edit Preconditions of operation use
refinement operation operation

t1 ⊒Pd t2 a → b a ⊒ b; a and b correspond to predicates
t1 ⊒D t2 a → b a ⊒ b; a and b correspond to functions or constants
t1 ⊒P t2 λ → a a corresponds to predicate, function or constant
t1 ⊑Pd t2 a → b a ⊑ b; a and b correspond to predicates
t1 ⊑D t2 a → b a ⊑ b; a and b correspond to functions or constants
t1 ⊑P t2 a → λ a corresponds to predicate, function or constant

erations. The second column lists corresponding tree edit operations. The

third column describes the preconditions of the tree edit operation use.
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Consider, for example, the first line of Table 6.1. The predicate abstrac-

tion operation applied to first order term t1 results with term t2 (t1 ⊒Pd t2).

This abstraction operation corresponds to tree edit replacement operation

applied to term tree of t1 that replaces the node a with the node b (a → b).

Moreover the operation can be applied only in the case if (i) label a is a

generalization of label b and (ii) both the nodes a and b in the term trees

correspond to predicates in the first order terms.

6.4 Computing the global similarity between two trees

Our goal now is to compute the similarity between two term trees. In order

to perform this we need to compute the minimal cost composition of the

abstraction/refinement operations that are necessary to convert one term

tree/first order term into the other. The starting point is the traditional

formulation of the tree edit distance problem.

Cost =
∑

i∈S

ni ∗ Costi (6.3)

The solution of the problem then becomes to minimize Cost in Eq. 6.3

and, therefore, to determine the minimal set of operations (i.e., the one

with the minimum cost) which transforms one tree into another. In Eq.

6.3 S stands for the set of the allowed tree edit operations; ni stands for

the number of i-th operations necessary to convert one tree into the other

and Costi defines the cost of the i-th operation. Our goal is to define the

Costi in a way to model the semantic distance.

A possible uniform proposal is to assign the same unit cost to all tree

edit operations that, as from Table 6.1, have their abstraction theoretic

counterparts. Table 6.2 illustrates the costs of the abstraction/refinement

(tree edit) operations, depending on the relation (equivalence, abstraction
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or refinement) being computed. Notice that the costs for estimating ab-

straction (⊑) and refinement (⊒) relations in AME have to be adjusted

according to their definitions. In particular the tree edit operations corre-

sponding to abstraction/refinement operations that are not allowed by the

definition of the given relation have to be prohibited by assigning to them

an infinite cost. Notice also that, we do not give any preference to a par-

ticular type of abstraction/refinement operations. Of course this strategy

can be changed to satisfy certain domain specific requirements.

Table 6.2: Costs of the abstraction/refinement (tree edit) operations, exploited for com-
putation of equivalence (Cost≡), abstraction (Cost⊑) and refinement (Cost⊒) relations
holding among the terms.

Abstraction/refinement (tree edit) operation Cost≡ Cost⊑ Cost⊒
t1 ⊒Pd t2 1 ∞ 1
t1 ⊒D t2 1 ∞ 1
t1 ⊒P t2 1 ∞ 1
t1 ⊑Pd t2 1 1 ∞
t1 ⊑D t2 1 1 ∞
t1 ⊑P t2 1 1 ∞

Consider, for example, the first line in Table 6.2. The cost of the tree

edit distance operation that correspond to the propositional abstraction

(t1 ⊒Pd t2) is equal to 1 when used for the computation of equivalence

(Cost≡) and abstraction (Cost⊒) relations in AME. It is equal to ∞ when

used for the computation of refinement (Cost⊑) relation.

Eq. 6.3 can now be used for computation of the tree edit distance score.

However, when comparing two web service descriptions we are interested

rather in similarity than in distance. We exploit the following equation

to convert the distance produced by an edit distance algorithm into the

similarity score:

sim = 1 −
Cost

max(number of nodes1, number of nodes2)
(6.4)
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where number of nodes1 and number of nodes2 stand for the number of

nodes in the trees. Note that for the special case of Cost equal to ∞ the

similarity score is estimated to 0.

Many existing tree edit distance algorithms allow to keep track of the

nodes to which a replace operation is applied. Therefore, as a result they

allow to obtain not only the minimal tree edit cost but also a minimal cost

mapping among the nodes of the trees. According to [132] this minimal

cost mapping is (i) one-to-one; (ii) horizontal order preserving between

sibling nodes; and (iii) vertical order preserving. For example, the mapping

depicted in Figure 6.1 complies to all these requirements while the mapping

depicted in Figure 6.2 violates (ii). In particular the third sibling Price on

the left tree is mapped to the third sibling Cost on the right tree while

the fourth sibling Color on the right tree is mapped to the second sibling

Colour on the left tree.

For the tree edit distance operations depicted in Table 6.1 we propose

to keep track of nodes to which the tree edit operations derived from the

replace operation are applied. In particular we consider the operations

that correspond to predicate and domain abstraction/refinement (t1 ⊒Pd,

t1 ⊑Pd, t1 ⊒D, t1 ⊑D). This allows us to obtain a mapping among the

nodes of the term trees with the desired properties (i.e., there is only

one-to-one correspondences in the mapping). Moreover it complies to the

structure preserving matching requirements namely functions are mapped

to functions and variables are mapped to variables. This is the case be-

cause (i) predicate and domain abstraction/refinement operations do not

convert, for example, a function into a variable and (ii) the tree edit dis-

tance operations, as from Table 6.1, have a one-to-one correspondence with

abstraction/refinement operations.

At the same time a mapping returned by a tree edit distance algo-

rithm preserves the horizontal order among the sibling nodes, but this is
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not desirable property for the data translation purposes. This is the case

because the correspondences that do not comply to the horizontal order

preservation requirements, like the one holding between Colour and Color

on Figure 6.2, are not included in the mapping. However, as from Table

6.1, the tree edit operations corresponding to predicate and domain ab-

straction/refinement (t1 ⊒Pd, t1 ⊑Pd, t1 ⊒D, t1 ⊑D) can be applied only

to those nodes of the trees whose labels are either generalizations or spe-

cializations of each other, as computed by the node matching algorithm.

Therefore, given the mapping produced by the node matching algorithm

we can always recognize the cases when the horizontal order between sib-

ling nodes is not preserved and change the ordering of the sibling nodes to

make the mapping horizontal order preserving. For example, swapping the

nodes Cost and Colour in the right tree depicted on Figure 6.2 does not

change the meaning of the corresponding term while allows the correspon-

dence holding between Colour and Color on Figure 6.2 to be included in

the mapping produced by a tree edit distance algorthm.

6.5 The approximate structure matching algorithm

As from above our goal is to find ‘good enough’ services [65] if perfect

are not available. We start by providing a definition of the approximate

structure matching as the basis for the algorithm.

We say that two nodes n1 and n2 in the trees T1 and T2 approximately

match iff c@n1 R c@n2 holds given the available background knowledge,

where c@n1 and c@n2 are the concepts at nodes of n1 and n2, and where

R ∈ {≡,⊑,⊒,∧,⊥, not related}.

We say that two trees T1 and T2 match iff there is at least one node n11

in T1 and a node n21 in T2 such that

• n11 approximately matches n21;
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• all ancestors of n11 are approximately matched to the ancestors of n21;

The approximate structure matching algorithm exploits the node match-

ing algorithm presented in Section 6.2. First the approximate structure

matching algorithm estimates the similarity of two terms by application

of a tree edit distance algorithm with the tree edit operations and costs

modified as described in Sections 6.3 and 6.4. The similarity scores are

computed for equivalence, abstraction and refinement relations. For each

of these cases the tree edit distance operation costs are modified as depicted

on Table 6.2. The relation with the highest similarity score are assumed

to hold among the terms. If the similarity score exceeds a given threshold

the mappings connecting the nodes of the term trees, as computed by the

tree edit distance algorithm, are returned by the matching routine what

allows for further data translation.

Pseudo code below illustrates approximate structure matching algo-

rithm.

Algorithm 13 Pseudo code for approximate structure matching algorithm

AME struct of
Tree of Nodes source;
Tree of Nodes target;
String relation;
double approximationScore;

1.MappingElement[] approximateStructureMatch(Tree of Nodes source, target,
double threshold)
2. MappingElement[] result;
3. approximateTreeMatch(source,target,result);
4. AME ame=analyzeMismatches(source,target,result);
5. if (getRelation(ame)==”=”) or (getRelation(ame)==”¡”)or
(getRelation(ame)==”¿”)
6. if (getApproximationScore(ame)¿threshold)
7. return result;
8. return null;

approximateStructureMatch takes as input the source and target term

trees and a threshold value. approximateTreeMatch fills the result array
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(line 3) which stores the mappings holding between the nodes of the trees.

In contrast to exactTreeMatch in Figure 12 approximateTreeMatch

considers the semantic relations other than equivalence. An AME ame

is computed (line 4) by analyzeMismatches. If ame stands for equiv-

alence, abstraction or refinement relations (line 5) and if an approxima-

tionScore exceeds threshold (line 6) the mappings calculated by approxi-

mateTreeMatch are returned (line 7). analyzeMismatches calculates

the aggregate score of tree match quality by exploiting a tree edit distance

algorithm as described in Section 6.4.

6.6 Summary

In this section we have presented exact and approximate structure preserv-

ing semantic matching algorithms based on the formal theory of abstrac-

tion and utilizing state of the art tree edit distance algorithms for efficient

semantic distance computation.
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Chapter 7

Testbed generation

This chapter presents a method for large scale datasets construction good

for evaluation of both Recall and Precision.

Material presented in this chapter has been developed in collaboration

with Paolo Avesani and published in [6].

In this chapter we first present the matching evaluation problem and

introduce commonly used measures for matching evaluation (§7.1). Then

we discuss the ways of constructing large scale datasets good for Recall

(§7.2) and Precision (§7.3) evaluation. Finally we present the results of

datasets evaluation (§7.4).

7.1 Matching

evaluation problem

The commonly accepted measures for a quantitative mapping evaluation

are based on the well known in information retrieval measures of relevance,

namely Precision and Recall.

Consider Figure 7.1; the calculation of these measures is based on the
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Figure 7.1: Basic sets of mappings

comparison between the mappings produced by a matching system (S in

Figure 7.1) and a complete set of reference mappings H considered to

be correct (the area inside the dotted circle in Figure 7.1). H is usually

produced by humans. Here and further we refer to the set of all possible

mappings (i.e., cross product of two input graphs) as M. Finally, the correct

mappings found by the system are the true positives :

TP = S ∩ H (7.1)

The incorrect mappings found by the system are the false positives :

FP = S − S ∩ H (7.2)

The correct mappings missed by the system are false negatives :

FN = H − S ∩ H (7.3)
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The incorrect mappings not returned by the system are the true nega-

tives :

TN = M − S ∩ H (7.4)

Further we call the mappings in H positive mappings, and the mappings

in

N = M − H = TN + FP (7.5)

negative mappings.

Precision is a correctness measure which varies from [0,1]. It is calcu-

lated as

Precision =
|TP |

|TP + FP |
=

H ∩ S

S
(7.6)

Recall is a completeness measure which varies from [0,1]. It is calculated

as

Recall =
|TP |

|TP + FN |
=

H ∩ S

H
(7.7)

However, neither Precision nor Recall alone can accurately evaluate the

match quality. In particular, Recall can easily be maximized at the expense

of a poor Recall by returning all possible correspondences, i.e. the cross

product of two input graphs. At the same time, a high Precision can be

achieved at the expense of a poor Recall by returning only few (correct)

correspondences. Therefore, it it necessary to consider both measures or a

combined measures.

F-measure is a global measure of the matching quality. It varies from

[0,1] and calculated as a harmonic mean of Precision and Recall:
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F − Mesaure =
2 ∗ Recall ∗ Precision

Recall + Precision
(7.8)

Notice that the complete reference mapping H must be known in ad-

vance in order to calculate both Precision and Recall. This opens a problem

of its acquisition. The problem is that the construction of H is a manual

process which, in the case of matching is quadratic in respect to the size

of the graphs to be matched. This process turns to be unfeasible for large

datasets. For instance, in the dataset we have exploited in this work,

namely Google, Yahoo and Looksmart web directories, each structure has

the order of 105nodes. This means that construction of H would would

require the manual evaluation o 1010 mappings.

7.2 A dataset for evaluating

Recall

We compute an approximation of H proposed in [6]. As from [6] we ap-

ply the proposed methodology to the Google, Yahoo and Looksmart web

directories. The key idea is to rely on a reference interpretation or nodes,

constructed by analyzing which documents have been classified in which

nodes. The assumption is that the semantics of nodes can be derived from

their pragmatics, namely by analyzing the documents that are classified

under the given nodes, In particular, the underlying intuition is that two

nodes have equivalent meaning if the sets of documents classified under

those nodes have a meaningful overlap. The basic idea is therefore to com-

pute the relationship hypotheses based on the co-occurrence of documents.

Consider the example presented in Figure 7.2. Let N1 be a node in

the first taxonomy and N2 be a node in the second taxonomy. D1 and

D2 stand for the sets of documents classified under the nodes N1 and N2

respectively. A2 denotes the documents classified in the ancestor node of
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Figure 7.2: TaxME. Illustration of a document driven similarity assessment.

N2; C1 denotes the documents classified in the children nodes of N1.

A simple equivalence measure is defined as

Eq(N1, N2) =
|D1 ∩ D2|

|D1 ∪ D2| − |D1 ∩ D2x|
(7.9)

Notice that the range of Eq(N1, N2) is [0,∞]. The intuition is that

the more D1 and D2 overlap the bigger is Eq(N1, N2) with Eq(N1, N2)

becoming infinite with D1 ≡ D2 Following what described in [6] Eq(N1, N2)

is normalized to [0,1]. The special case of D1 ≡ D2 is approximated to 1.

Given the two nodes N1 and N2 and the related sets D1 and D2 we

introduce two additional sets: (i) the set of documents classified in the

ancestor node of N2, namely A2, and (ii) the set of documents classified in

the children nodes of N1, namely C1.

The generalization relationship holds when the first node has to be

considered more general of the second node. Intuitively, it happens when

the documents classified under the first node occur in the ancestor of the

second node, or the documents classified under the second node occur in
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the subtree of the first node. Following this intuition we can formalize the

generalization hypothesis as

Mg(N1, N2) =
|A2 ∩ D1) ∪ (C1 ∩ D2)|

|D1 ∩ D2|
(7.10)

The specialization relationship hypothesis Lg(N1, N2) can be easily for-

mulated exploiting the symmetry of the problem.

The TaxME dataset is computed starting from Google, Yahoo! and

Looksmart. These web directories hold many interesting properties: they

are widely known, they cover overlapping topics, they are heterogeneous,

they are large, they address the same space of contents. All of this makes

the working hypothesis of documents co-occurrence sustainable. The nodes

are considered as categories denoted by lexical labels, the tree structures

are considered as hierarchical relations, and the URLs classified under a

given node are taken to denote documents. The following table summarize

the total amount of processed data.

Table 7.1: Number of nodes and documents processed in the TaxME construction process.
Web directories Google Looksmart Yahoo!
number of nodes 335902 884406 321585
number of urls 2425215 8498157 872410

Let us briefly summarize the five steps process used in the TaxME ref-

erence mapping construction.

Step 1 All three web directories are crawled, their hierarchical structure

and their web content;

Step 2 The URLs that do not exist in at least one web directory are

discarded;

Step 3 The nodes with a number of URLs under a given threshold (10 in

the experiment) are pruned;
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Step 4 A manual selection is performed with the goal of restricting the

assessment of the similarity metric to the subtrees concerning the same

topic; 50 pairs of sub trees are selected;

Step 5 For each of the subtree pair selected; an exhaustive assessment of

correspondences holding between nodes is preformed. This is done by

exploiting the equivalence metric defined in Eq. 7.9 and the corre-

sponding generalization and specialization metrics. The TaxME sim-

ilarity metric is computed as the biggest of the three metrics, namely

SimTaxME = max(Eq(N1N2), Lg(N1, N2), Mg(N1, N2)) (7.11)

The distribution of mappings constructed using SimTaxME is depicted

in Figure 7.3. for varying values of the metric.

Figure 7.3: Distribution of mappings according to TaxME similarity metric

Notice that SimTaxME is very robust. The number of mappings is in fact

very stable and grows substantially, of two orders of magnitude, only with

a value of the metric less than 0.1. As a pragmatic decision, the mappings
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with SimTaxME above 0.5 are taken to constitute the reference mappings

TaxME. As a result, TaxME is composed from 2265 mappings. Half of

them are equivalence relationships and half are generalization relationships.

As depicted in Figure 7.4, TaxME is an incomplete reference mapping since

it contains only part of the mappings in H. The key difference between

Figures 7.4 and 7.1 is the fact that the complete reference mapping (the

area inside the dotted circle in Figure 7.4) is simulated by exploiting an

incomplete one (the area inside the dashed circle in Figure 7.4).

Figure 7.4: Mapping comparison using TaxME. TP, FN and FP stand for true positives,
false negatives and false positives

However, if we assume that TaxME is a good representative of H we use

Eq. 7.7 for an estimation of Recall. In order to ensure that this assumption

holds a set of requirements have to be satisfied:

1. Correctness, namely the fact that TaxME ⊂ H (modulo annotation

errors).

2. Complexity, namely the fact that state of the art matching system

experience difficulties when run on TaxME.
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3. Discrimination Capability, namely the fact that different sets of map-

pings taken from TaxME are hard for the different systems.

4. Incrementally, namely the fact that TaxME allows for the incremental

discovery of the weaknesses of the tested systems 1.

5. Monotonicity, namely the fact that the matching quality measures

calculated on the subsets of the dataset does not differ substantially

from the measures calculated on the whole dataset.

As discussed in [6] TaxME satisfies requirements 1,2,3,4. The fifth re-

quirement is new, but TaxME satisfies it on wide range of the dataset

samples.

In order to build TaxME 2, however, we need to verify another property

of SimTaxME, namely its robustness. By robustness we mean the fact

that the number of incorrect mappings is high only for very law values of

SimTaxME and decreases very sharply as soon as these values increase. We

need robustness as a it highlights the correspondence between the values

of the similarity measure and the human observed similarity. To test the

robustness of SimTaxME, we have randomly selected 100 mappings in 9

intervals of range 0.1 and one interval of range 0.05 as depicted in Figure

7.5 and manually evaluated their correctness. This resulted in a relatively

small amount of manual work as we have analyzed around one thousand

of mappings. The results are presented in Figure 7.5.

The results of this manual evaluation show that SimTaxME is very robust

as:

• it is very stable with a small percentage of incorrect mappings for a

very large range [0.3,1];

1We do not consider this property here as insignificant to our goals
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Figure 7.5: Distribution of incorrect mappings. Each column is calculated evaluating 100
randomly selected mappings

• the number of incorrect mappings becomes substantial for very small

values of SimTaxME, namely with threshold less than 0.1.

7.3 A dataset for evaluating

Precision

As from Eq 7.6 in order to evaluate Precision we need to know FP, which in

turn, as from Figure 7.1, requires that we know H. However, as from Section

7.1, computing H in the case of a large scale matching task requires an

implausible human effort. Notice also that we can not use the incomplete

reference mapping composed from positive mappings i.e., TaxME, either.

In this case, as shown in Figure 7.4, FP can not be computed. This is a

case because FPunknown = S
⋂

(H − TaxME), marked as a grey area in

Figure 7.4, is not known.

Our proposal in this thesis is to construct a reference mapping for the

evaluation of both Recall and Precision, let us call il TaxME 2, defined as
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TaxME2 = TaxME ∪ NT2 (7.12)

where NT2 is an incomplete mapping containing only negative mappings

(i.e., NT2 ⊂ M − H in Figure 7.4). Of course TaxME 2 must be a good

representative of M and therefore satisfy the three requirements described

in the previous section and satisfied by TaxME. Notice that the request

of correctness significantly limits the size of NT2 since each mapping has

to be evaluated by a human annotator (i.e., |NT2| ≪ |M − H|). At the

same time, NT2 must be big enough in order to be the source of meaningful

results. Therefore, we require NT2 to be at least of the same size as TaxME,

namely |NT2| ≥ |TaxME|.

NT2 is computed from complete mapping set M (as from Figure 7.1) in

the following two macro steps:

Step 1 Candidate mappings selection. The goal of this step is to select a

set M ′ where M ′ ⊆ M which contains a big number of ”hard” negative

mappings.

Step 2 Negative mappings selection. The goal of this step is to filter all

positive mappings from M ′. In order to achieve this goal M ′ is first

pruned to the size that allows manual evaluation of the mappings. Fi-

nally, the negative mappings are manually selected from the remaining

mapping set.

Let us describe Step 1 and Step 2 in more detail.

7.3.1 Candidate mappings selection

The candidate mapping set M ′ is selected from M , as depicted in Figure

7.6.
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Figure 7.6: Mapping sets in TaxME 2. Gray area stands for FPi a set of FP produced
by a matching system on M ′

The goal of this step is to ensure that M ′ contains a big number of

”hard” negative mappings. Intuitively a ”hard” negative mapping is map-

ping with high value of similarity measure which is incorrect according to

manual annotation. Given the robustness of SimTaxME we have decided

to exploit SimTaxME as a similarity measure for M ′ construction. Con-

sider Figures 7.3 and 7.5. A big enough number of negative mappings

can be obtained only for values of SimTaxME in the 0-0.2 range. As a

pragmatic decision we have selected M ′ as a mappings having SimTaxME

values in the 0.05-0.2 range. As from Figure 7.3, this allowed us to obtain

18063+4776=22836 candidate mappings.

7.3.2 Negative mappings selection

The negative mappings selection step is devoted to the computation of

NT2. The process is structured as follows:
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Step 1 Matching systems selection. The goal of this step is to select a set

of matching systems whose results are exploited for constructing NT2.

The set of the selected systems should be heterogeneous. By this we

mean that the selected systems should make mistakes on different sets

of mappings. Thus, the selected systems have to be the representatives

of the different classes of the exerting matching techniques. This also

prevents NT2 from being based towards a particular class of matching

solutions.

Step 2 Computation of negative mappings. The goal of this step is to

compute NT2 by exploiting the results obtained by running the se-

lected matching systems on M’. In particular NT2 is computed from

FP as NT2 =
⋃

i FPi, where FPi stands for the FP produced by run-

ning the i-th matching system on M ′ (i.e., incorrect mappings in the

set S
⋂

M ′). The results of his exercise is depicted in Figure 7.6,

where the grey area stands for FPi. This construction schema ensures

that NT2 will be hard for all exerting systems and discriminative given

that the set of matching systems evaluated on M’ is representative and

heterogeneous. An implicit constraint is that the number of FPs pro-

duced by each of the systems should be comparable. This prevents

the existence of a bias towards a particular class of matching solu-

tions. Notice that the computation of FP (as from Eq. 7.2) requires

the human annotation of the systems results.

Based on the classification of the matching systems originally presented

[56] and then largely extended and augmented in [129]2 as a part of step

1 we have selected three matching systems namely COMA [31], Similarity

Flooding (SF) [94] and S-Match (SM) [6, 64]3.

2See also http://www.ontologymatching.org
3In the evaluation discussed in this thesis we have used the basic version of S-Match and not the

enhanced version described in [6]
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During Step 2 we have executed COMA, SF and S-Match on M’. We also

have manually evaluated the mappings found by the systems and selected

the FP from them. Notice that we have not distinguished among different

semantic relations while evaluating the matching quality. Therefore, for

example, the mapping A ⊑ B produced by S-Match and A1 ≡ B1 produced

by COMA have been considered as TP if A ≡ B and A1 ⊑ B1 are TP

according to the human judgement. Finally we have computed NT2 as the

union of FPs produced by the matching systems.

Table 7.2 provides a quantitative description of the content of NT2 and

of the effort needed to build it.

Table 7.2: Total number of mapping and number of FP computed by COMA SF and
S-Match on M ′

COMA SF SM
Found (S) 2553 2163 2151

Incorrect (FP) 870 776 781

As from the first row of the Table 7.2 the total number of annotated

mappings was 2553+2163+2151=6867. Notice that is the 6 orders of mag-

nitude lower than the number of mappings to be considered in the case

of complete reference mapping. Notice also that the number of mappings

per system is very balanced, as required . Figure 7.7 shows how the FPs

produced by the systems are partitioned.

As from Figure 7.7, there are no FPs found by SM, COMA and SF,

or even by SM and COMA together. There are the small intersections

between the FPs produced by SM and by SF (0.1%) or by COMA and by

SF (2.3%). These results justify our assumption that all 3 systems belong

to different classes.

The final result is that NT2 consists of 2374 mappings. Notice that the

size of NT2 is not equal to the sum of the FPs reported in the second row of

Table 7.2 since, as from Figure 7.7, there is some intersection among these
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Figure 7.7: Partitioning of FPs computed by COMA, SF and S-Match on M ′

sets. The union of NT2 with TaxME has allowed us to compute a reference

mapping TaxME 2, good for the evaluation of both Recall and Precision,

of 2265+2374=4639 mappings.

7.4 Evaluating dataset

In this section we present the evaluation of the Complexity, Discrimination

Capability and Monotonicity of the TaxME 2. In particular we exploit

the results of twelve matching systems (Apfel [38], CMS, ctxMatch2 [18],

OLA [46], OMAP [131] and seven systems participated in OAEI-2006 [43]

evaluation). For the systems we use the default settings or, if applicable,

the settings provided by the authors for the OAEI-2005, 2006 [45, 43]

evaluations. We also compare the results of the matching systems with

the results of the systems exploited in the dataset construction process

(COMA, SF and SM). The evaluation results, in terms of TP and FP, are

presented in Table 7.3.

7.4.1 Complexity

Figure 7.8 presents the Precision of the systems when evaluated on TaxME2.
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Table 7.3: Number of FP and TP on TaxME 2 dataset
Apfel CMS ctxMatch OLA OMAP COMA SF SM Hmatch

FP 670 367 299 1356 1113 870 776 781 632
TP 269 319 298 724 694 876 218 669 303

Falcon Automs RiMOM OCM COMA++ Prior
FP 1513 730 1416 712 1343 1085
TP 1030 330 915 356 608 552

Figure 7.8: Evaluation results. Precision on TaxME 2 dataset

As from Figure 7.8 the maximum Precision is about 0.5, a value which

significantly lower than the results obtained with the other datasets. For

example, the average Precision demonstrated by Falcon, FOAM, CMS and

OMAP on the real world part of the semantic tests (problems 301, 302,

303, 304) in the OAEI-2005 evaluation [45] was in the 0.91-0.93 range.

Figure 8.8 illustrates the Recall of the matching systems while Figure

7.10 presents the F-Measure as an aggregated matching quality measure.

The best F-Measure is 0.45 what is significantly lower than the results

demonstrated by the systems on the other datasets.

The results of our evaluation highlight the complexity of TaxME2. The

other interesting observation is that the systems exploited in the dataset

construction process demonstrate a performance which is comparable with
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Figure 7.9: Evaluation results. Recall on TaxME 2 dataset

the other systems. In fact all evaluated systems have experienced the same

problems as COMA, SF and SM. This fact justifies that TaxME 2 reflects

the inherent properties of real world problems. At the same time, it is still

very hard for the state of the art matching systems.

7.4.2 Discrimination capability

Consider Figures 7.11 and 7.12.

They present the partitioning of the FPs and the TPs in TaxME 2 ac-

cording to the results of the matching systems. As from Figure 7.11 all

matching systems provided the correct results only for 20% of the FPs while

25% of the FPs are incorrectly found by ten or more matching systems.

At the same time 29% of the TPs are not found by any of the matching

systems and 65% of the TPs are found by 2 or less of the matching sys-

tems. Figures 7.11 and 7.12 illustrate the fact that the different systems

experience difficulties on different parts of the dataset (i.e., TaxME 2 is

discriminative or it is hard for the different systems in the different ways).
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Figure 7.10: Evaluation results. F-Measure on TaxME 2 dataset

7.4.3 Monotonicity

A mapping dataset is said to demonstrate a monotonous behavior if the

matching quality measures calculated on its subsets of gradually increas-

ing size converge to the values obtained on some whole dataset, for all

matching systems evaluated on a some datasets. This property illustrates

the fact that the dataset as a whole and its parts are not biased to the

particular matching solution(s). It also shows how the gradual increase in

the dataset size influence on the results of the matching systems in terms

of the matching quality and gives a clue of whether the further increase in

the dataset size may significantly influence on the values of the matching

quality measures.

In order to evaluate the monotonicity property we randomly sampled

50, 100, 200, 500, 1000 mappings form TaxME 2 dataset. For example,

in order to obtain a 100 mappings sample 50 mappings were randomly

selected and added to the previously selected 50 mappings sample. Than

the matching quality measures for the matching systems were calculated

on the samples of various size. An error was computed as

132



CHAPTER 7. TESTBED GENERATION 7.4. EVALUATING DATASET

Figure 7.11: Partitioning of FPs found by matching systems in TaxME 2 dataset according
to the number of systems that found them

ErrorMeasure =
|Measuresample − Measuredataset

Measuredataset
(7.13)

where Measuresample stands for a matching quality measure calculated

on the sample; Measuredataset denotes a matching quality measure calcu-

lated on the whole dataset. Thus, for example, if a matching system had

on TaxME 2 dataset Precision of 0.2 and on the 100 mappings sample

randomly selected from the dataset its Precision is 0.21 the error of the

system is ErrorPrecision = |0.21−0.2|
0.2 = 0.05

ErrorPrecision, ErrorRecall and ErrorF−Measure for various sample sizes

averaged for 10 sample selections are depicted on Figures 7.13, 7.14 and

7.15 respectively.

Notice that the error drops very quickly with the sample size increase.

Therefore, the matching quality measures obtained on the randomly se-

lected samples of various size converge quickly to their values of the ”full”

dataset. In particular given 500 mappings sample ErrorPrecision and ErrorRecall
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Figure 7.12: Partitioning of TPs found by matching systems in TaxME 2 dataset according
to the number of systems that found them

is less than 10% what, given the results depicted on Figures 7.8 and 8.8

correspond to 0.02-0.05 difference in absolute values. Considering this dif-

ference as marginal we conclude that TaxME 2 is monotonous.

7.5 A dataset for structure preserving semantic match-

ing evaluation

We have evaluated the matching quality of the structure preserving se-

mantic matching algorithms on 132 pairs of first order logic terms. Half of

the pairs were composed of the equivalent terms (e.g., journal(periodical-

publication) and magazine (periodical-publication)) while the other half

were composed from similar but not equivalent terms (e.g., web-reference(publication-

reference) and thesis-reference (publication-reference)). The terms were

extracted from different versions of the Standard Upper Merged Ontol-

ogy (SUMO)4 and the Advance Knowledge Transfer (AKT)5 ontologies.

4http://ontology.teknowledge.com/
5http://www.aktors.org
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Figure 7.13: ErrorPrecision depending from the sample size

We extracted all the differences between versions 1.50 and 1.51, and 1.51

and 1.52 of the SUMO ontology and between versions 1, 2.1 and 2.2 of

the AKT-portal and AKT-support ontologies6. These are both first order

ontologies, so many of these differences mapped well to the potential dif-

ferences between terms that we are investigating. However, some of them

were more complex, such as differences in inference rules, or consisted of

ontological objects being added or removed rather than altered, and had

no parallel in our work. These pairs of terms were discarded and our tests

were run on all remaining differences between these ontologies. Therefore,

we have simulated the situation when the service descriptions are defined

exploiting the two versions of the same ontology.

7.6 Summary

In this chapter we have presented a method for large scale dataset construc-

tion good for evaluation of both Recall and Precision. We also introduced

a set of properties essential for the dataset to be used for matching evalu-

6see http://dream.inf.ed.ac.uk/projects/dor/ for full versions of these ontologies and analysis
of their differences
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Figure 7.14: ErrorRecall depending from the sample size

ation. Finally we evaluated the dataset exploiting a wide range of state of

the art matching systems. According to the evaluation results the dataset

comply to the relevant properties.
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Figure 7.15: ErrorF−Measure depending from the sample size
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Chapter 8

Evaluation

This chapter provides evaluation results for S-Match system and an imple-

mentation of the structure preserving semantic matching algorithms. The

results have been obtained and compared based on the measures outlined

in §7.1.

Material presented in this chapter has been developed in collaboration

with Pavel Schvaiko and published in [58, 59, 60, 64].

In this chapter we first discuss evaluation setup (§8.1). Then, we provide

evaluation results (§8.2).

8.1 Evaluation setup

The evaluation was performed on seven matching tasks from different ap-

plication domains, see Table 8.1. There are three matching tasks from

a business domain (#1,3,5). The first business example (#1) describes

two company profiles: a Standard one (mini) and Yahoo Finance (mini),

while, #5, represents their full versions. The third business example (#3)

deals with BizTalk1 purchase order schemas. There is one matching task

from an academy domain (#2). It describes courses taught at Cornell Uni-

versity (mini) and at the University of Washington (mini). Finally, there

1http://www.microsoft.com/biztalk
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Table 8.1: Some indicators of the complexity of the test cases

# matching task max depth #nodes #labels per tree concepts of nodes

1 Yahoo(mini) vs. 2/2 10/16 22/45 Conjunctive
Standard(mini) Disjunctive

2 Cornell vs. 3/3 34/39 62/64 Conjunctive
Washington Disjunctive

3 CIDX vs. Excel 3/3 34/39 56/58 Conjunctive
Disjunctive

4 Looksmart vs. 10/8 140/74 222/101 Conjunctive
Yahoo Disjunctive

5 Yahoo vs. 3/3 333/115 965/242 Conjunctive
Standard Disjunctive

6 Google vs. 11/11 561/665 722/945 Conjunctive
Yahoo Disjunctive

7 Google vs. 11/16 706/1081 1048/1715 Conjunctive
Looksmart Disjunctive

are three matching tasks on general topics (#4,6,7) as represented by the

well-known web directories, such as Google2, Yahoo!3, and Looksmart4.

Table 8.1 provides some indicators of the complexity of these test cases5.

The reference mappings (also called expert mappings) for some of these

problems (namely for the tasks #1,2,3) were established manually. Then,

the results computed by the systems have been compared with expert map-

pings. It is worth noticing that the task of creation of expert mappings is

an error-prone and a time consuming one. Even if for the moment of writ-

ing this thesis we have created expert mappings for the biggest matching

tasks (#6,7) of Table 8.1, we do not report these findings in this thesis.

Addressing in full detail the emerged issues along that process as well as

the matching results achieved is out of scope of this thesis, see for some

details [6, 60]. Thus, in this evaluation study we focus mostly on the perfor-

mance characteristics of S-Match, involving large matching tasks, namely

schemas with hundreds and thousands of nodes. Notice, scalability proper-

ties of matching systems is among the most important problems of schema

2http://www.google.com/Top/
3http://dir.yahoo.com/
4http://www.looksmart.com/
5Source files and description of the schemas tested can be found at our project web-site, experiments

section: http://www.dit.unitn.it/ accord/

140



CHAPTER 8. EVALUATION 8.1. EVALUATION SETUP

matching (in general) these days, see e.g., [14, 34]. Quality characteristics

of the S-Match results which are presented here address only medium size

schemas. The results of S-Match in a large-scale evaluation are presented

in Section 7.4.

There are three further observations that ensure a fair (qualitative) com-

parative study. The first observation is that Cupid, COMA, and Rondo

can discover only the mappings which express similarity between schema

elements. Instead, S-Match, among others, discovers the disjointness re-

lation which can be interpreted as strong dissimilarity in terms of other

systems under consideration. Therefore, we did not take into account the

disjointness relations when specifying the expert mappings. The second

observation is that, since S-Match returns a matrix of relations, while all

other systems return a list of the best mappings, we used some filtering

rules. More precisely we have the following two rules: (i) discard all the

mappings where the relation is idk; (ii) return always the core relations,

and discard relations whose existence is implied by the core relations. Fi-

nally, whether S-Match returns the equivalence or subsumption relations

does not affect the quality indicators. What only matters is the presence

of the mappings standing for those relations.

As match quality measures we have used the following indicators: pre-

cision, recall, overall, and F-measure. As a performance measure we have

used time. It estimates how fast systems are when producing mappings

fully automatically. Time is very important for us, since it shows the ability

of matching systems to scale up.

In our experiments each test has two degrees of freedom: directionality

and use of oracles. By directionality we mean here the direction in which

mappings have been computed: from the first schema to the second one

(forward direction), or vice versa (backward direction). We report the best

results obtained with respect to directionality, and use of oracles allowed.
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We were not able to plug a thesaurus in Rondo, since the version we have is

standalone, and it does not support the use of external thesauri. Thesauri

of S-Match, Cupid, and COMA were expanded with terms necessary for a

fair competition (e.g., expanding uom into unitOfMeasure, a complete list

is available at the URL in footnote 14).

All the tests have been performed on a P4-1700, with 512 MB of RAM,

with the Windows XP operating system, and with no applications running

but a single matching system. The systems were limited to allocate no

more than 512 MB of memory. All the tuning parameters (e.g., thresholds,

combination strategies) of the systems were taken by default (e.g., for

COMA we used NamePath and Leaves matchers combined in the Average

strategy) for all the tests. S-Match was also used in default configuration,

e.g., threshold for string-based matchers was 0.6. This threshold has been

defined after experimentation on several schema matching tasks (see for

details the URL in footnote 14). Finally, all the element level matchers of

the third approximation level (e.g., gloss-based matchers) were not involved

in the evaluation since all the matching tasks under consideration were

successfully resolved by the matchers of Table 4.1 which belong to the first

and the second approximation levels; see [60] for the preliminary evaluation

results of matchers belonging to the third approximation level as well as

for the tasks where they are useful.

While computing precision and recall for structure preserving seman-

tic matching algorithms we have considered the correspondences hold-

ing among first order terms rather than the nodes of the term trees.

Thus, for instance, journal(periodical-publication1)=magazine(periodical-

publication2) was considered as single correspondence rather than two cor-

respondences, namely journal=magazine and periodical-publication1=periodical-

publication2.
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8.2 Evaluation results

We present the time performance results for all the tasks of Table 8.1, while

quality results, as from the previous discussion are possible to estimate

only for some of the matching tasks (#1,2,3). The evaluation results for

the matching problems #1,2,3 are shown in Figures 8.1,8.2,8.3.

Figure 8.1: Evaluation results: Yahoo Finance (mini) vs. Standard (mini), test case #1

Figure 8.2: Evaluation results: Cornell (mini) vs. Washington (mini), test case #2

For example, in Figure 8.2, since all the labels at nodes in the given
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test case were correctly encoded into propositional formulas, all the quality

measures of S-Match reach their highest values. In fact, as discussed before,

the propositional SAT solver is correct and complete. This means that once

the element level matchers have found all and only the mappings, S-Match

will return all of them and only the correct ones.

Figure 8.3: Evaluation results: CIDX vs. Excel, test case #3

For a pair of BizTalk schemas: CIDX vs. Excel, S-Match performs as

good as COMA and outperforms other systems in terms of quality indi-

cators. Also, the optimized version of S-Match works more than 4 times

faster than COMA, more than 2 times faster than Cupid, and as fast as

Rondo.

The time performance results obtained for the matching tasks #4,5,6,7

of Table 8.1 are presented in Figure 8.4. Cupid went out of memory on all

the tasks. Therefore, we present the results for other systems.

In the case of Looksmart-Yahoo matching problem the trees contain

about hundred nodes each. S-Match works about 18% faster than S −

MatchB and about 2% slower than COMA. SF, in turn, works about 3

times faster than S-Match. The relatively poor improvement (18%) occurs

because our optimizations are implemented in a straightforward way. More
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Figure 8.4: Execution times: Looksmart vs. Yahoo, test case #4

precisely, on small trees (e.g., test case #4) a big constant factor6 dominates

the growth of all other components in S-Match computational complexity

formula.

On Yahoo-Standard matching problem S-Match works about 40% faster

than S − MatchB. It performs 1% faster than COMA and about 5 times

slower than SF. The relatively small improvement in this case can be ex-

plained by noticing that the maximum depth in both trees is 3 and that the

average number of labels at nodes is about 2. The optimizations cannot

significantly influence the system performance.

The next two matching problems are much bigger than the previous

ones. They contain hundreds and thousands of nodes. On these trees

SF went out of memory. Therefore, we provide the results only for the

other systems. In the case of Google-Yahoo matching task S-Match is

more than 6 times faster than S − MatchB. COMA performs about 5

times slower than the optimized version. These results suggest that the

optimizations described in this thesis are better suited for big trees. In

the case of the biggest matching problem, involving Google-Looksmart,

S-Match performs about 9 times faster than COMA, and about 7 times

6This is also known in the literature as an implementational constant.
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Figure 8.5: Execution times: Yahoo vs. Standard, test case #5

faster than S − MatchB.

Figure 8.6: Execution times: Google vs. Yahoo, test case #6

Having considered matching tasks of Table 8.1, we conclude that S-

Match performs (in terms of execution time) slightly slower than COMA

and SF on the schemas with one up to three hundred of nodes (see, Fig-

ures 8.4,8.5). At the same time, S-Match is considerably faster on the

schemas with more than five hundreds nodes (see, Figures 8.6,8.7), thereby

indicating system scalability.

Interestingly enough our exact structure matching algorithm was able

to find 36 correct correspondences what stands for 54% of Recall with
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Figure 8.7: Execution times: Google vs. Looksmart, test case #7

100% Precision. All mismatches (or correct correspondences not found

by the algorithm) corresponded to structural differences among first order

terms which exact structure matching algorithm is unable to capture. The

examples of correctly found correspondences are given below:

meeting-attendees(has-other-agents-involved)

meeting-attendee(has-other-agents-involved)

r&d-institute(Learning-centred-organization)

r-and-d-institute(Learning-centred-organization)

piece(Pure2,Mixture)

part(Pure2,Mixture)

has-affiliatied-people(Affiliated-person)

has-affililated-person(affiliated-person)

The first and the second example illustrate the minor syntactic differ-

ences among the terms, while the third and fourth examples illustrate the

semantic heterogeneity in the various versions of the ontologies.

147



8.2. EVALUATION RESULTS CHAPTER 8. EVALUATION

Figure 8.8 presents the matching quality measures depending on the

cut-off threshold value for approximate structure preserving matching al-

gorithm. As from Figure 8.8, the algorithm demonstrates high matching

Figure 8.8: The matching quality measures depending on threshold value for approximate
structure matching algorithm

quality on the wide range of threshold values. In particular, F-Measure

values exceed 70% for the given range. Table 8.2 summarizes the time per-

formance of the matching algorithm. It presents the average time taken by

Table 8.2: Time performance of approximate structure matching algorithm (average on
132 term matching tasks)

Node matching Node matching Structure matching
Step 1 and 2 Step 3 and 4

Time, ms 134.1 3.3 0.9

the various steps of the algorithm on 132 term matching tasks. As from

the table, Step 1 and 2 of the node matching algorithm significantly slow

down the whole process. However these steps correspond to the linguistic

preprocessing that can be performed once offline (see §4.2). Given that the

terms can be automatically annotated with the linguistic preprocessing re-

sults (see §4.2) once when changed, the overall runtime is reduced to 4.2

ms, which corresponds roughly to 240 term matching tasks per second.
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8.3 Summary

In this chapter we have presented comparative evaluation of semantic

matching against the other state of the art systems. The results are en-

couraging and empirically prove the strength of our approach.

However, as our evaluation results show, it is very difficult to know a

priori the quality to expect from a matching system. Matching tasks are

so different that a system can perform very well on some data and not

that well on some other. This means that in order to justify the claim of a

matching system to be generic, a lot of work has to be done yet, especially

to address all the issues that arise when dealing with large-scale matching

tasks.
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Chapter 9

Summary

In this thesis we have proposed, developed and implemented a novel ap-

proach to ontology matching, called semantic matching, discussed its tech-

nical details and thorough evaluation. Specifically, the main findings of

each chapter of the thesis are summarized one by one in sequel.

We showed that there are many applications that may need ontology

matching. We showed that there are various existing ways of expressing

knowledge that are found in diverse applications. These ways of expressing

knowledge can be viewed as different forms of ontologies that may need to

be matched (Chapter 1). Unlike many other works, we aimed to treat

the matching problem in a unified way and provide a common roof under

the heading of ontology matching for many existing instantiations of this

problem, such as schema matching, catalog matching, etc. Finally, we

technically defined the ontology matching problem.

We showed that ontology matching can take advantage of innumerable

basic techniques composed and supervised in diverse ways (Chapter 2).

We provided a systematic view over the available techniques by classifying

them and providing some guidelines which help in identifying families of

matching methods.

We reviewed existing schema-based matching systems which emerged
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during the last decade (Chapter 3). These were presented in light of the

classifications developed in Chapter 2. We also pointed to concrete basic

matcher and matching strategies used in the considered systems. We sum-

marized some global observations concerning the presented systems and

outlined a number of constant features that are shared by the majority of

them.

Having analyzed in detail the state of the art we proposed an approach

to ontology matching called semantic matching (Chapter 4). We developed

a new semantic matching algorithm called S-Match. We discussed with the

help of examples and pseudo-code the main macro steps of the algorithm.

We showed how efficiency of the basic semantic matching algorithm can

be improved within the semantic matching settings (Chapter 5).

We demonstrated how a semantic matching framework can be extended

in order to deal with more complex structures in (Chapter 6). This illus-

trates extensibility of the semantic matching algorithms and helps in their

application to the various problems.

We discussed the thorough evaluation of the matching systems in Chap-

ter 7. In particular we have focused on the test bed generation. As a part of

this effort we have discussed the TaxME a large scale data set constructed

from Google, Yahoo! and Looksmart web directories.

We performed an evaluation of the semantic matching approach (Chap-

ter 8). As our comparative evaluation shows it is very difficult to know a

priori the quality to expect from a matching system. Matching tasks are

so different that a system can perform very well on some, usually small

test cases, while not that well on some other, usually large-scale test cases.

Analysis of the mistakes done by a system opens a number of ways for

further improvements.

We would like to make a final remark. The remark concerns some as-

sumptions and limitations of the proposed solution. In particular, the pro-
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posed solution naturally assumes that the ontologies to be matched have

a meaningful overlap, thus these are worth been matched. The proposed

approach reduces the conceptual heterogeneity only to a certain extent,

though, for example, cases such as geometry axiomatized with points as

primitive objects and geometry axiomatized with spheres as primitive ob-

jects are not handled. At last, although we have aimed at producing a

generic matching solution, a lot of work still needs to be done.We have only

investigated matching of tree-like structures produced out of classifications

and catalogs, while it has still to be analyzed whether the presented solu-

tion will properly handle the trees generated, e.g., out of relational schemas

and the other forms of ontologies.
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