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Aleh A. Kavalenka,† Bogdan Filipič,‡ Marcus A. Hemminga,§ and Janez Sˇ trancar*,|

Department of Systems Analysis, Belarusian State University, F. Skorina Avenue 4, Minsk 220050, Belarus,
Department of Intelligent Systems and Laboratory of Biophysics, Solid State Physics Department, Jozˇef
Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia, and Laboratory of Biophysics, Wageningen

University, Dreijenlaan 3, NL-6703 HA Wageningen, The Netherlands

Received April 28, 2005

Complexity of biological systems is one of the toughest problems for any experimental technique. Complex
biochemical composition and a variety of biophysical interactions governing the evolution of a state of a
biological system imply that the experimental response of the system would be superimposed of many
different responses. To obtain a reliable characterization of such a system based on spin-label Electron
Paramagnetic Resonance (EPR) spectroscopy, multiple Hybrid Evolutionary Optimization (HEO) combined
with spectral simulation can be applied. Implemented as the GHOST algorithm this approach is capable of
handling the huge solution space and provides an insight into the “quasicontinuous” distribution of parameters
that describe the biophysical properties of an experimental system. However, the analysis procedure requires
several hundreds of runs of the evolutionary optimization routine making this algorithm extremely
computationally demanding. As only the best parameter sets from each run are assumed to contribute into
the final solution, this algorithm appears far from being optimized. The goal of this study is to modify the
optimization routine in a way that 20-40 runs would be enough to obtain qualitatively the same
characterization. However, to keep the solution diversity throughout the HEO run, fitness sharing and newly
developed shaking mechanisms are applied and tested on various test EPR spectra. In addition, other
evolutionary optimization parameters such as population size and probability of genetic operators were also
varied to tune the algorithm. According to the testing examples a speed-up factor of 5-7 was achieved.

INTRODUCTION

Complexity is one of the basic properties of natural
biological systems. It qualitatively describes the number of
(biochemical or biophysical) patterns/solutions that coexist
in a system. In a pure system, only one solution can describe
the entire system, whereas in complex systems distributions
of solutions can exist (see Figure 1). The complexity of a
biological membrane, for example, originates in its bio-
chemical composition of a few hundred lipids and many
different proteins - channels and pumps, as well as
membrane enzymes and receptors. In such a system, the
constituents exhibit different interactions to each other, from
local steric and van der Waals to more long-ranged Coulomb
and dipolar interactions. The intensity and orientation of these
interactions strongly depend on the type of interacting
molecules as well as the potentials of the neighboring
molecules. All these parameters make the biological mem-
brane a very complex system in which many motional
patterns can be found.

EPR spectroscopy in combination with nitroxide spin
labeling (SL-EPR) has proven to be a powerful technique

for the exploration of heterogeneity and motion in biological
systems.1,2 The time scale of SL-EPR appears to be in the
nanoseconds range, which is exactly the range needed to
observe possible motional anisotropy of local rotational
motions through motional averaging. The difference in
anisotropy of rotational motion can be used to distinguish
lateral domains together with other spectroscopic parameters
such as the rate of motion, polarity, spin-spin broadening,
etc. However, to determine the picture of the actual
heterogeneity within biomembranes, a special methodology
that includes advanced spectral analysis and inverse-problem
solving techniques needs to be applied.3 Such an analysis is
based on mathematical modeling, spectrum fitting, and
spectral parameter optimization by means of evolutionary
computation. A large amount of information evolves from
such an approach. Therefore a special method of solution
condensation called GHOST was developed.1 It incorporates
solution density filtering,ø2 goodness filtering, solution-space
slicing, and domain determination, leading to a graphical
presentation of the system parameters. This advanced ap-
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Figure 1. Biosystem complexity axis of increasing complexity
from simple single-solution to quasicontinuous distribution of
solutions.
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proach named Hybrid Evolutionary Optimization (HEO) was
shown to be powerful enough to study complex heteroge-
neous systems,1 but the computational demand appeared to
be an obstacle for wider usage of the method.

The core of the problem lies in the optimization routine.
To obtain a reliable result even in the case of quasicontinuous
problems, the HEO procedure has to be executed at least
200 times. Each particular run consists of 100 generations
with a population size of 300 candidate solutions that are
exposed to various genetic operators. Since an average
operator spends up to 10 spectrum calculations, HEO on
average spends 60 million spectrum calculations. As a single
spectrum calculation takes around 10 ms on a 1 GFLOPS
processor, this results in 200 h of computer time spent for a
single characterization. Therefore, our aim was to enhance
the HEO routine to speed up the approach to make it more
applicable.

THEORY AND METHODOLOGY

EPR Spin Labeling. EPR spectroscopy in combination
with spin labeling can be applied to study the properties of
biological membranes in a nondestructive way. In this
approach spin-labeled analogues of different molecules are
introduced into a system to report about their structural and
motional properties. Since the nitroxide moiety is a small
perturbation to the whole molecule, one can approximate that
the description derived from spin probes is a reasonable
approximation for the nonlabeled molecules. This fact
enables us to use EPR to explore biological systems in vivo
so that there is no need for (bio)chemical extraction of the
subsystem of interest. In this way, various coexisting states
of the system can be detected and characterized.

As was mentioned in the Introduction, EPR spin labeling
inherits a unique sensitivity to the motional and polarity
properties of the labeled molecules providing an opportunity
to extract information on structure and dynamics of the lipids
and membrane proteins (i.e. restriction and rate of rotational
motions, relative membrane locations, and oxygen profile).
The complexity of such a system results in a large number
of solutions superimposed in the EPR spectrum of such a
labeled system (Figure 2).

EPR Spectrum Modeling.Generally, to describe the EPR
spectra of spin labels, the stochastic Liouville equation should
be used.4-6 However, under physiological conditions the
majority of the local rotational motions is fast with respect
to the EPR time scalesas calculated by numerous molecular
dynamics simulationssand therefore the fast motional ap-

proximation can be applied, reducing the computational
demand by a factor of 100.

Since the basic approach has been already discussed
elsewhere,7,8 we will emphasize only the physical background
of the spectral parameters involved in our calculations. First,
one or two parameters are used in partial averaging of the
rotational motion. While averaging the magnetic properties
of the spin Hamiltonian for spin probes directed at every
allowed direction with respect to the external magnetic field,
an order parameterSor opening cone angleϑ (that defines
the maximal tilt angle) and asymmetry cone angleæ (that
describes the maximal restriction of spinning) will be applied.
Second, the traces of the interaction tensorsg and A are
linearly corrected withpA

9 and Prot parameters to take into
account the effects of polarity and proticity, respectively.
Third, when calculating the convolution of the magnetic field
distribution and basic line shape, in addition two line width
parameters are applied: a Lorentzian-type line is defined in
the motional narrowing approximation10 with a single (ef-
fective) rotational correlation time,τc, and an additional
broadening constantW. The latter arises primarily from
unresolved hydrogen superhyperfine interactions and con-
tributions of paramagnetic impurities (e.g. oxygen), external
magnetic field inhomogeneities, field modulation effects, and
spin-spin interaction.

To take into account the superposition of motional/polarity
patterns, this basic set of six line shape parametersϑ, æ, τc,
W, pA, and Prot is expanded for the number of spectral
componentsNc. In addition there areNc-1 weightsd of these
spectral components. Altogether, there are 7Nc-1 spectral
parameters, which have to be tuned by the optimization
routine. Taking into account the resolution limit of SL-EPR
which is around 30 parameters, this allows the usage of at
most 4 spectral components.

Optimization. An optimization routine is used to find the
set of spectral parameters that produces the best fit to the
experimental spectrum. The goodness of fit (optimization
objective function) was chosen to be the reducedø2 criteria

whereyexp andysim are the experimental and simulated data,
respectively,σ is the standard deviation of the experimental
points,N is the number of spectral points, andp the number
of model parameters.

For the optimization, HEO routine, a combination of the
Genetic Algorithm (GA) with Downhill-Simplex local search
was applied. Since the optimization scheme is presented
elsewhere,11 we only briefly report on the implemented
algorithm. The routine starts with a random initialization of
solutions and continues with the tournament selection and
application of genetic operators for 100 generations. The
3-point crossover with probability of 0.7 and uniform
mutation with probability of 0.01 are applied together with
certain knowledge-based operators and local improvements
(performed with Downhill-Simplex with probability of 0.002,
see Figure 3).1,11 The elite set (2% of the population size) is
used to keep track of the best individuals found so far. One
HEO consists of 100 generations with a population size of
300 individuals and provides the best parameter set found.

Figure 2. Superimposed four component EPR spectrum. The total
EPR spectrum is a sum of four spectral components derived within
a described simulation model and determined by four sets of the
following spectral parameters{ϑ, æ, τc, W, pA, Prot,d}.
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In the 200 HEO runs a group of best parameter sets can be
accumulated. This information is then filtered, grouped, and
graphically presented with a so-called GHOST condensation
algorithm.

Taking only one best parameter set from each run can be
a waste of computer time. In fact, HEO converges to the
best solution region within 20-80 generations, thus creating
a great number of similar solutions after 100 generations.
Therefore, HEO was modified to increase the solution
diversity within the population while preserving the same
level of convergence rate. In such a case, it should be possible
to include more than one parameter set into the final group
of solutions and consequently rely on a smaller number of
runs.

To maintain the population diversity throughout the GA
generations and not to affect convergence, one should modify
the selection scheme or add new operator(s) to keep the
diversity within the population. To do that, one should clearly
understand the HEO as well as the problem search space.

Parameters Search Space.The optimization process
should be thought of as searching for the minima in the
landscape of the parameter search space (phase-space), which
may contain both local and global minima. A powerful
optimization routine should be able to find global minimum-
(a), which can be of different types (Figure 3), i.e., well-
defined minima (Figure 3b) or a flat minimum valley minima
(Figure 3a). An optimization routine should therefore keep
convergence to the minima of typeB (discrete problems)
and maintain the diversity to be able to reveal the minimum
valleys (in continuous problems) already in a single run.

Population Diversity in GA. Genetic algorithms are
general purpose global search algorithms that use principles
of natural genetics. Simultaneously, a population of possible
solutions is being optimized. A simple genetic algorithm
(SGA)12 is suitable for finding the optimum of a unimodal
function in a bounded search space. However, both analysis
and experiments show that the SGA cannot find multiple
global maxima of a multimodal function12-14 or a function
with a flat global minimum, which is an extreme limit of
the multimodal function. This limitation can be overcome
by a mechanism that creates and maintains several subpopu-
lations within the search space, referred to as “niching
methods”. There exist sequential niching methods;15,16paral-
lel niching methods (sharing,17 crowding,14,18and clearing13);

speciation methods19-21 and clustering;22,23 and multipopu-
lation methods24 (island models25,26and migration models27).

Another way to find multiple optima is to make several
runs of an ordinary GA. In each run the GA typically
converges to a different optimum. Thus, several optima are
found.28 Exactly this strategy was used in the previous
multiple HEO-based approach.

Since the methods that assume creating subpopulations do
not match with our specific problem, we chose the sharing
parallel niching method to maintain diversity within a single
run together with a multiple run approach.

Sharing. Sharing14,17 requires that fitness is shared as a
single resource among similar individuals in a population
of solutions.29 The fitness sharing method modifies the search
landscape by changing the fitness function (2), i.e. the value
of ø2, in densely populated regions30

where the sharing functionê is a function of distanced[i,j]
between two population elements and can be defined as

It returns ‘1’ if the elements are identical and ‘0’ if they
cross some threshold of dissimilarity, specified by constant
σshare. HereR is a constant, which regulates the shape of the
sharing function. As a result of the sharing operator applica-
tion, the population becomes better distributed in the search
space which improves the population diversity (Figure 4).

Shaking. Shaking is a new operator that was developed
to provide small Gaussian-like deviations to the spectral
parameters (Figure 5) before the crossover operator is
applied. The shaking algorithm prevents “grid” formation
and preserves the diversity in the solution population (for
explanation of the grid problem see Discussion section).

Projection Principle and GHOST Condensation.The
large amount of solutions resulting from the multiple HEO
runs should be condensed and grouped together to construct
a discrete or quasicontinuous description of the system. If
the proposed model complexity (4 spectral components in
our case) is sufficient to describe the system, the final
description is also discrete. However, when the proposed
complexity is lower than in reality, the model tries to describe

Figure 3. Schematic presentation of parameters search space and
the effect of the local mutation procedure responsible for fine-
tuning. Due to the noisy spectra and finite resolution of the local
optimization routine starting approximations (white circles) are
optimized into more accurate solutions (gray circles) according to
the local phase-space landscape. (a) In case of a flat valley (plateau
in multidimensional space), the results of the local optimization
routine strongly depend on the starting approximation. (b) In case
of sharply defined minimum, local optimization routine provides
similar results independently of starting approximation unless
starting approximation is too far from the local minimum.

Figure 4. Schematic presentation of the fitness sharing operator
function. Top: In a nonsharing routine crowding at the local minima
is allowed, since there is no operator that would maintain diversity.
Bottom: In a sharing-routine, fitness function is increased according
to the density of solution, aiming to prevent crowding.
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the most important features of the system (EPR spectra in
our work). In this case, the landscape at the point of the
global minimum changes into a flat valley, and consequently,
HEO needs to resolve the distribution of solutions describing
this optimum region of the parameter search space. In this
way, multiple-HEO approach incorporates the “projection
principle” idea.1,3

After solution filtering according to the local solution
density and goodness of fit, performed in the same way as
defined before,1 the GHOST condensed results are presented
in 2D cross-sections{S-τc, S-W, S-pA} (Figure 6). The color
of any solution point in the GHOST diagram is defined by
RGB specification, where the intensity of each color
component (red, green, blue) represents the relative value
of the spectral parametersτc, W, andpA in their definition
intervals{0-3 ns}, {0-4 G}, and{0.8-1.2}, respectively
(Figure 7). This technique enhances the possibility to
distinguish groups of solutions and to explore optimized
values of model parameters.

The most important property of the GHOST algorithm is
that there is no need to define the complexity (the number
of different motional patterns) in advancesit comes out
automatically from the GHOST condensation and graphical
presentation.

RESULTS AND DISCUSSIONS

Evaluation Criteria. To judge the success of the modi-
fication of the HEO algorithm the following criteria were
selected: GHOST quality (solution diversity, solution do-
mains determination, model parameters distribution); minimal
fitness achieved inø2

min, and fitness deviationσ(ø2), that is
40% of the bestø2

min values; runs contribution histograms;
and maximal detected solution densityFmax. To check the
generality of the new algorithm we analyzed two types of
EPR spectra: experimental ones (from membranes and
membrane proteins) and synthetic (discrete and continuous).

Multiple Runs. Before making any implementation changes
in the code, we simply reduced the number of HEO runs
from 200 to 20 and increased the contribution of each run
(more than one best parameter set). The results for a typical
experimental spectrum are shown in Figure 8 where the
GHOST diagram (Figure 8b) and contribution histogram
(Figure 8c) are compared with the original GHOST diagram
based on the 200 runs (Figure 8a). It can be easily seen that
this is not the right way to reduce the computational demand
of the problem. With the modified approach, the GHOST
diagram (Figure 8b) does not resemble the original one
(Figure 8a). In addition it can be seen that only a few runs
(such as the first, seventh, ninth, and seventeenth) contribute
to the GHOST presentation as it is shown by runs contribu-
tion histogram in Figure 8c, whereas the other runs (i.e. the
third, fourth, tenth, etc.) have no contribution at all. This
causes the loss of solution diversity, a worse distribution of
ø2 (see minimum value and distribution width in “20 runs”
column of Table 1), and a wrong solution domains deter-
mination (Figure 8b). In addition one also can see a higher
solution density as a consequence of the crowding in the
search space. An even worse result is achieved when the
modified “20 runs” approach is tested on a continuous
problem: compare original “200 runs” (a) and “20 runs”
(b) in Figure 11. It can be easily seen that the results do not
meet the original GHOST distribution. The bad GHOST
picture arises from the fact that the contribution of the runs
is extremely uneven (Figure 12b), originating in a solution
crowding.

Figure 5. Schematic presentation of the Gaussian shaking operator.
Shaking operator implies a Gaussian random generator that provides
a small deviation to the value of each parameter. The error bars
indicate the width of Gaussian probability distribution of these
deviations. The standard relative uncertainties of the spectral
parameters{ϑ, æ, τc, W, pA, Prot,d} are{0.02, 0.02, 0.04, 0.035,
0.035, 0.04, 0.02}, respectively, which follow average uncertainties
that are found empirically for these parameters within the simulation
model.

Figure 6. An example of the GHOST solution presentation of the
spin labeled horse neutrophils taken from bronchoalveolar fluid
(BAL) from horses suffering from the chronic obstructive pulmo-
nary disease (COPD). Horses were sedated with medetomidine
purchased from Domosedan (Turku, Finland). A 2.5-m long
endoscope was introduced through the precleaned and topically
anesthetized nostril and advanced until it wedged in a bronchus.
Three hundred milliliters of prewarmed sterile physiological saline
solution was infused through the biopsy channel into the bronchus
and immediately reaspirated into a sterile flask cooled in ice.
Polymorphonuclear leukocytes were isolated from whole BAL
samples, spin labeled with MeFASL(10,3), centrifuged, transferred
to quartz capillary, and measured at Bruker ELEXSYS E500 9.6
GHz spectrometer (field sweep of 10 mT; modulation: 0.15 mT,
100 kHz; 5 scans of 40 s with 40 ms of time constant), fitted with
EPRSIM BBW software and characterized using GHOST conden-
sation procedure.

Figure 7. Color legend. The RGB (red, green, and blue) color of
any particular solution point codes the relative values of parameters
τc, W, andpA in their definition intervals.

Table 1. Optimization Parameters after 200 and 20 Runs for the
Real Membrane Spectruma

criteria 200 runs 20 runs

ø2
min 3.4 4.1

σ(ø2) 2.0 1.9
Fmax 64.2 71.5

a For the experimental preparation see the caption to Figure 6.

SPIN LABEL CHARACTERIZATION OF BIOSYSTEM COMPLEXITY J. Chem. Inf. Model., Vol. 45, No. 6, 20051631



According to the literature, the sharing implementation
could change the result.14,17To test the sharing approach the
continuous problem was chosen (Figure 11a and 12a). The
results of this test in terms of the runs contribution histogram
and GHOST cross-section are shown in Figures 11c and 12c.
It can be seen that the GHOST representation better
resembles the original one, and also the runs contribution
becomes more even. However, the distribution ofø2 is worse
(see the minimum value and the distribution width in
“sharing” column of Table 2). This result was not good

enough, even when we increased the population size from
300 to 600 (to keep convergence at the same level due to
the sharing implementation).

Grid Problem and Shaking. By careful analysis of the
parameters in the resulting solution distribution, we found
the origin of the unsuccessful implementation of the sharing
approachsthe shortcoming of the three-point crossover, one
of the most important operators in the GA algorithm.
”Genetic material” related to good model parameters spreads
and copies among individuals in the population. After a few
tens of generations the population forms a ”grid” in the
search space (Figure 9) as a consequence of the rough action
of the 3-point crossover operator. This leads to the loss of
solution diversity.

In the HEO algorithm only a local search operator is
capable of restoring the diversity and eliminating the ”grid”,
but due to the high computational cost and extremely high

Figure 8. Typical characterization of spin labeled real membrane (see the caption to Figure 6): (a) GHOST as a result of 200 runs of HEO
where only one solution is extracted from a single run; (b) GHOST as a result of 20 runs of the same HEO algorithm where on average
10 solutions are taken from each run; (c) runs contribution histogram for the case of 20 runs where the number of runs is shown along the
x-axis and number of solution (taken from a particular run) along they-axis.

Figure 9. Schematic presentation of the “grid” problem for three cross-sections of the phase-space. Due to the standard multipoint crossover,
subgroups of parameters are “transferred” between generations untouched, resulting in a gridlike distribution of the GHOST solution (single
run). The lines indicate very high vertical and horizontal densities of solutions that evolve from copying of parts of parameter sets within
the optimization routine.

Figure 10. Single run GHOSTs (with population size 600): (a)
original version with crowding problemsseveral solutions are
crowded in many regions and (b) version with shaking that
maintains diversityssolutions crowded in each point previously now
spread over the flat minima region with the help of shaking operator.

Table 2. Comparison of theø2 Distributions and Solution Densities
for the Different Multirun HEO-GHOST Approaches on the
Synthetic 15-Component Spectrum that Simulates Quasicontinuous
Distribution of Spectral Parametersa

criteria 200 runs 20 runs sharing shaking

ø2
min 1.2 1.2 1.7 1.2

σ(ø2) 0.9 0.4 1.3 0.9
Fmax0 69.5 75.7 69 66.1

a See also caption to Figure 12.
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impact on the convergence to local minima the probability
of the Downhill-Simplex local search operator should be and
is very low. Therefore the local search operator cannot be
used to maintain population diversity. Instead, a new idea

of “shaking” was introduced in our work keeping the
standard crossover. As it was described in the Methods
section, the shaking operator introduces a small deviation
in parameters and thereby eliminates the effect of the “grid”.

Figure 11. Comparison of the effectiveness of different multirun HEO-EnDashGHOST approaches on the synthetic 15-component spectrum
that simulates a quasicontinuous distribution of spectral parameters. (a) GHOST as a result of 200 runs of original HEO routine; (b) GHOST
as a result of 20 runs of the original HEO routine; (c) GHOST as a result of 20 runs of the modified HEO routine that includes sharing
operator; and (d) GHOST as a result of 20 runs of the modified HEO routine that includes shaking operator as described in the text.

Figure 12. Comparison of runs contribution histograms of different multirun HEO-GHOST approaches on the synthetic 15-component
spectrum that simulates a quasicontinuous distribution of spectral parameters. (a) GHOST as a result of 200 runs of original HEO routine;
(b) GHOST as a result of 20 runs of the original HEO routine; (c) GHOST as a result of 20 runs of the modified HEO routine that includes
sharing operator; and (d) GHOST as a result of 20 runs of the modified HEO routine that includes shaking operator as described in the text.

Figure 13. GHOSTs comparison of the original-HEO approach with 200 runs (above) versus modified-HEO (with shaking) based on 20
runs (bellow): (a) for synthetic discrete 2D spectrum that was constructed from two spectral components with the known parameter set and
optimized as unknown one; (b) synthetic quasicontinues spectrum (see the caption to Figure 12); (c) spectrum of the real membranes of
breast cancer cells MT1 in the exponential phase of growth: MT1 breast cancer cells were seeded at approximately 106 cells in a culture
flask with surface area of 75 cm2, spin labeled with the methyl ester of 5-doxyl palmitate, MeFASL(10,3), and measured under the same
conditions as the membranes of horse neutrophils (see the caption to Figure 6); (d) spectrum of the spin labeled (maleimide spin label)
cystein mutant of major coat protein of bacteriophage M13 at amino acid position 46 reconstituted in dimyristoylphosphatidylcholine lipid
bilayer.31
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Indeed, the implementation of the shaking operator allowed
the algorithm to overcome the solution crowding and
increased the population diversity already in a single run.
This result is shown in Figure 10 for a continuous problem
that represents the most extreme case of the complexity.

The results of the implemented shaking algorithm are
shown in Figures 11 and 12. One can see that the shaking
operator considerably improves the result of a single run as
the GHOST pattern from 20 runs (Figure 11d) is very similar
to the original one (Figure 11a), the runs contribution
histogram is very even (Figure 12d), and finally the distribu-
tion of ø2 is very good (Table 2). This approach therefore
enables us to reduce the number of HEO runs while
preserving the quality of the final result (Figures 11d and
12d and Table 2). Therefore by using this new algorithm,
we are able to speed up the optimization process by a factor
of 5-7.

In further tests, the algorithm with the new shaking
operator was also applied to several experimental and
synthetic spectra in order to cover a wide range of possible
systems related to discrete and continuous problems. The
results of characterizations of four different examples are
shown in Figure 13, where the GHOST diagrams of different
approaches are compared (original “200-runs” approach is
compared against “shaking-20-runs” approach). The GHOST
diagrams are very similar, confirmed also by the comparison
of the averaged values and the distribution widths of the
condensed parameters (table is not shown).

CONCLUSION

To reduce the computational demand of the original
multiple HEO approach, we developed and implemented a
novel shaking operator and carried out an extensive testing
on various spectra that represent a wide range of possible
applications. With the modified optimization algorithm we
succeeded in keeping the quality of the characterization,
thereby considerably reducing the computational time of the
EPR spectrum analysis by a factor of 5-7. With this
successful modification the application of advanced EPR
spectra analysis1 to complex biosystems, such as biological
membranes and membrane proteins, becomes more feasible.
Further numerical calculations on both synthetic and experi-
mental data should prove the advantages of the implemented
modifications and hopefully find new possibilities to improve
and speed up EPR spectra analysis.
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