ОСОБЕННОСТИ ДИФФУЗИИ В $Si_{1-x}Ge_x$ СПЛАВАХ: КВАНТОВОХИМИЧЕСКИЙ АНАЛИЗ

В. Е. Гусаков

ГО «НПЦ НАН Беларуси по материаловедению», gusakov@ifttp.bas-net.by

1. ВВЕЛЕНИЕ

Исследование диффузионных процессов в SiGe сплавах привлекает большое внимание. Это обусловлено как фундаментальным интересом — построение количественной теории диффузионных процессов в сплавах, так и практическими целями. Новое поколение микро- и оптоэлектронных приборов, базирующихся на Si/Si $_{1-x}$ Ge $_x$ (полевые транзисторы с модулированной подвижностью носителей заряда, резонансно-туннельные диоды, одноэлектронные транзисторы) требуют детального контроля поверхностных дефектов и дефектов раздела фаз. Необходимо получение практически 0-дефектных структур с точно заданными профилями легирования. В настоящей работе представлены результаты по исследованию методами квантовой химии диффузии кислорода в кристаллах $Si_{1-x}Ge_x$. Кислород является одной из основных технологических примесей в $Si/Si_{1-x}Ge_x$ и широко используется для создания диэлектрических слоев и процессов геттерирования.

2. РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

2.1 Теоретический анализ

Моделирование проводилась в рамках метода Хартри-Фока приближения NDDO (параметризация PM5) в кластерном приближении. Коэффициент диффузии рассчитывался на основании общего выражения, полученного методом моделирования случайных блужданий атома на п-мерной решетке:

$$D = \frac{d^2 N_{et}}{2 d_s} \Gamma, \ \Gamma = \frac{1}{2 \pi} \frac{\prod_{i=0}^{N} \gamma_i^{(0)}}{\prod_{i=1}^{N} \gamma_i^{(b)}} \exp\left(-\frac{\Delta E}{k_B T}\right), \tag{1}$$

где d — длина элементарного (единичного) прыжка атома; N_{et} — степень вырождения диффузионной траектории (число эквивалентных траекторий, выходящих из данной точки прыжка); d_s — размерность пространства (в нашем случае d_s = 3); Γ — число прыжков в единицу времени. Детали метода расчета D описаны в [1–2].

В $Si_{1-x}Ge_x$, при малой концентрации атомов германия x, практически все диффузионные траектории атомов кислорода не пересекают область первой или второй координационных сфер атома германия, и влияние атомов германия на коэффициент диффузии обусловлено изменением при легировании эффективной постоянной решетки $Si_{1-x}Ge_x$. Моделирование показало, что уменьшение (увеличение) постоянной кристаллической решетки (a) приводит к уменьшению (увеличению) величины диффузионного барьера ΔE . Во всем исследуемом интервале x рассчитанное изменение ΔE описывается выражением

$$\Delta E(a(x))/\Delta E(a(0)) = \gamma \cdot a - 3{,}717, \tag{2}$$

где $\gamma = 0.87 \text{ Å}^{-1}$. Следовательно, для малых x, в $\mathrm{Si}_{1-x}\mathrm{Ge}_x$ кристаллах эффективное увеличение постоянной кристаллической решетки, при увеличении концентрации атомов германия, будет приводить к росту величины диффузионного барьера и экспоненциальному уменьшению коэффициента диффузии междоузельного атома кислорода. Для больших концентраций атомов германия элементарный диффузионный прыжок междоузельного атома кислорода в кристаллической решетке $Si_{1-x}Ge_x$ может происходить и в непосредственной близости от атома германия. Поскольку величина диффузионного барьера определяется положением не только атома кислорода, но и положением ближайших атомов кристаллической решетки (диффузионный переход является кооперативным явлением), атом германия будет существенно влиять на величину диффузионного барьера. Чтобы учесть данный эффект был выполнен расчет величины ΔE для случая, когда атом германия расположен во второй и третьей конфигурационных сферах, построенных вокруг атома кремния в конфигурации Si-O-Si. Обратим внимание, что множество всех диффузионных траекторий распадается на два класса: диффузионные траектории, лежащие (I) и не лежащие (II) в плоскости Ge-Si связи. Расчеты показали, что в случае диффузионной траектории I, величина диффузионного барьера изменяется от 2,3 эВ (вторая координационная сфера) до 2,5 эВ (третья координационная сфера). Для случая, когда атом германия не лежит в плоскости диффузии атома кислорода, величина диффузионного барьера практически совпадает с величиной диффузионного барьера в идеальном кристалле кремния ΔE =2,58 эВ. Таким образом, атом германия, в кристаллической решетке кремния, оказывает непосредственное влияние на величину диффузионного барьера междоузельного атома кислорода до расстояний $R_0 \sim 6 \text{ Å}$. Благодаря легированию атомами Ge в кристаллах Si_{1-x}Ge_x происходит формирование анизотропии диффузионного барьера – изменение величины барьера в зависимости от ориентации диффузионной траектории. Следовательно, происходит снятие вырождения по числу эквивалентных траекторий (параметр N_{et} в формуле (1)). С ростом концентрации атомов германия (x)эффективная величина N_{et} будет уменьшаться от $N_{et}(x=0)=6$ до $N_{et}(x=X_c)=1$, где X_c некоторая пороговая концентрация атомов германия. Зависимость $N_{et}(x)$ и величина X_c определялась на основании теории протекании [3] и было получено следующее выражение для относительного коэффициента диффузии

$$\frac{D(x)}{D(0)} = (X_c - x)^{\beta} X_c^{-\beta} + \frac{x}{6X_c}.$$
 (3)

2.2. Сравнение с экспериментом

Сопоставим теоретический анализ с имеющимися экспериментальными результатами. Недавно в работе [4] проведено исследование диффузии междоузельного атома кислорода в сплавах $\mathrm{Si}_{1-x}\mathrm{Ge}_x$ (x=0.01-0.054), основанное на анализе возникновения и релаксации эффекта дихроизма ИК линии поглощения междоузельного атома кислорода. Экспериментальные результаты [4] показали, что величина дихроизма, введенная одноосным давлением, уменьшается с увеличением концентрации атомов Ge. Оказалось, что вне зависимости от компоненты кинетики релаксации (медленной или быстрой), относительный коэффициент диффузии атомов кислорода $D(x)/D_0$ уменьшается с увеличением концентрации атомов германия (рис. 1). Прежде всего, отметим, что коэффициент диффузии атома кислорода, полученный на основании экспериментов по дихроизму, связан с определением микроскопического ко-

эффициента диффузии, так как, фактически, определяется время перехода атома кислорода между двумя соседними междоузельными позициями кристаллической решетки.

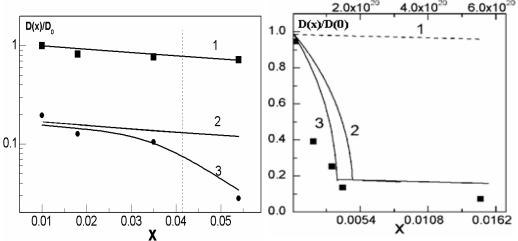


Рис. 1. Зависимость относительного коэффициента диффузии $D(x)/D_0$ междоузельного атома кислорода в кристаллах $\mathrm{Si}_{1:x}\mathrm{Ge}_x$ от концентрации атомов Ge. Точки – эксперимент, $D_0=1,43\cdot10^{-19}\mathrm{cm}^2\mathrm{c}^{-1}$ [4]; линии – расчет, $D_0=D(x=0)$; I – коэффициент диффузии, рассчитан из быстрой компоненты времени релаксации дихроизма; 2,3 – медленной компоненты времени релаксации

 $Puc.\ 2.$ Рассчитанная зависимость относительного коэффициента диффузии D(x)/D(0) междоузельных атомов кислорода в кристаллах $\mathrm{Si}_{1-x}\mathrm{Ge}_x$, как функция относительной концентрации атомов германия. Точки — экспериментальные значения относительной скорости формирования термодоноров в кристаллах $\mathrm{Si}_{1-x}\mathrm{Ge}_x\ [5-8]$. Кривые $I,\ 2,\ 3$ были рассчитаны без (I) и с учетом $(2,\ 3)$ зависимости предэкспоненциального фактора от концентрации атомов германия , $2-R_0=5,5\ \text{Å},\ 3-R_0=6,0\ \text{Å}$

Как показано выше, множество всех атомных конфигураций Si-O-Si расщепляется на два подмножества. Первое подмножество (Si-O-Si), составляют атомные конфигурации, в которых атом германия находится вне третьей координационной сферы, построенной относительно атома Si в конфигурации (Si-O-Si)_I. Второе подмножество составляют атомные конфигурации (Si-O-Si)_{II}, в которых атом германия находится в непосредственной близости от атома кислорода, то есть попадает в третью или более близкую координационную сферу. Расчеты показали, что для (Si-O-Si)₁ анизотропия активационного барьера не наблюдается, и зависимость относительного коэффициента диффузии D(x)/D(0) определяется изменением активационной энергии ΔE с изменением концентрации атомов германия. Рассчитанная зависимость D(x)/D(0) с учетом (1) представлена на рисунке 1 (кривая 1) и хорошо описывает изменение экспериментального коэффициента диффузии, рассчитанного из быстрой компоненты времени релаксации дихроизма. Для конфигурации (Si-O-Si)_{II}, вырождение по эквивалентным траекториям снимается полностью. В этом случае в формуле (3) отношение $[N_{et}(x)/N_{et}(0)] \approx 1/6$ и, соответственно, коэффициент диффузии, рассчитанный из медленной компоненты времени релаксации дихроизма, будет су-

щественно меньше, что и наблюдается на эксперименте $D_{slow}(x=0.01)/D_{fast}(x=0.01) \approx 1/6$ (рис. 1). При увеличении концентрации атомов германия для конфигурации (Si-O-Si) $_{
m II}$ отношение $D(x)/D_0$ будет тоже уменьшаться, однако зависимость от концентрации атомов германия будет более сильной, чем в случае конфигурации (Si-O-Si)_I. Действительно, когда выполняется условие $N_{
m Ge} >$ 0,041 (пунктирная линия на рис. 1), среди конфигураций (Si-O-Si)_{II} встречаются конфигурации с двумя атомами германия. Для экспериментально исследованной в [4] концентрации $N_{\rm Ge} \approx 0.054$ практически половина конфигураций (Si-O-Si)_{II} содержит два атома германия, и эффективная постоянная решетки, при расчете изменения потенциального барьера из формулы (2), в данном случае будет равна $a \approx 5{,}443 \text{ Å} \ (N_{\text{Ge}} \approx 0{,}0618)$. Кривые 2 и 3 на рисунке 1 были рассчитаны без учета (2) и с учетом (3) формирования двух атомных конфигураций Si-O-Si-Ge (или Si-O-Si-Si-Ge) в конфигурациях (Si-O-Si)_{II}. Сравнение с экспериментальными результатами позволяет сделать вывод, что наблюдаемое экспериментально уменьшение эффективного коэффициента диффузии (рассчитанного из медленной компоненты времени релаксации дихроизма) в области концентраций атомов германия $x \ge 0,054$ обусловлено ростом концентрации атомных конфигураций (Si-O-Si-Ge)_{II} и (Si-O-Si-Si-Ge)_{II}.

В отличие от эффекта релаксации дихроизма, формирование термодоноров контролируется макроскопическим коэффициентом диффузии. Анализ имеющихся экспериментальных результатов [5–8] показал, что уже при концентрациях $N_{\rm Ge} = 3 \cdot 10^{19} {\rm cm}^{-3}$ в кристаллах ${\rm Si}_{1-x}{\rm Ge}_x$ наблюдается резкое уменьшение скорости формирования термодоноров. Экспериментальные результаты [5–8] и рассчитанные зависимости относительного коэффициента диффузии D(x)/D(0) в кристаллах ${\rm Si}_{1-x}{\rm Ge}_x$ с различной концентрацией атомов германия представлены на рис. 2. Как следует из рассчитанной зависимости D(x)/D(0), увеличение концентрации атомов германия приводит к резкому уменьшению эффективного коэффициента диффузии междоузельных атомов кислорода при концентрациях атомов германия $\sim 2 \cdot 10^{20}$ см $^{-3}$, и обусловлено уменьшением предэкспоненциального фактора и увеличением активационной энергии ΔE .

3. ВЫВОДЫ

Выполненный общий теоретический анализ диффузии междоузельного атома кислорода в $Si_{1-x}Ge_x$ сплавах показал, что коэффициент диффузии примесных атомов (дефектов) может существенно уменьшаться уже при малой концентрации (x < 0.05) одной из компонент сплава, и данное резкое уменьшение коэффициента диффузии обусловлено концентрационной зависимостью предэкспоненциального фактора.

Работа выполнена при частичной финансовой поддержке Белорусского республиканского фонда фундаментальных исследований.

ЛИТЕРАТУРА

- 1. Gusakov V. E. // Solid State Phenom. 2005. V. 108–109. P. 413.
- 2. Gusakov V. // J. Phys.: Condens. Matter. 2005. V. 17. P. S2285.
- 3. Shklovskii B. I., Efros, A. L. Electronic Properties of Doped Semiconductors (Springer Series in Solid-State Sciences, Berlin, 1984). P. 388.
- 4. Khirunenko L. I., Pomozov Yu. V., Sosnin M. G., Duvanskii A. V., Sobolev N. A., Abrosimov N. V., Riemann H. // Solid State Phenomena. 2010. V. 156–158. P. 181.
- 5. Babich V. M., Valah M. Ya., Kovalchuk V. B., Rudko G. Yu., Shahraychuk N. I. // Ukr. J. Phys. 1990. V. 35. P. 1561.

4-ая Международная научная конференция «Материалы и структуры современной электроники», 23–24 сентября 2010 г., Минск, Беларусь C.108–112

- 6. Brinkevich D. J., Markevich V. P., Murin L. I., Petrov V. V. // Sov. Phys. Semicond. 1992. V. 26. P. 383.
 - 7. Hild E., Gaworzewski P., Franz M., and Pressel K. //. Appl. Phys. Lett. 1998. V. 72. P. 1362.
- 8. Hong Li, Yang Deren, Xuegong Yu, Ma Xiangyang, Tian Daxi, Li Liben and Que Duanlin. // J. Phys.: Condens. Matter. 2004. V. 16. P. 5745.