ИССЛЕДОВАНИЕ ПРОЦЕССОВ ДЕФЕКТООБРАЗОВАНИЯ В ПЛАСТИНАХ БЕЗДИСЛОКАЦИОННОГО МОНОКРИСТАЛЛИЧЕСКОГО КРЕМНИЯ, ПОДВЕРГНУТЫХ БЫСТРОМУ ВЫСОКОТЕМПЕРАТУРНОМУ ОТЖИГУ¹

В. С. Просолович¹, Д. И. Бринкевич¹, Ю. Н. Янковский¹, Ю. Б. Васильев², А. Н. Петлицкий², В. И. Плебанович², А. И. Простомолотов³, Н. А. Верезуб³, М. В. Меженный⁴, В. Я. Резник⁴

 ^ТБелорусский государственный университет, <u>prosolovich@bsu.by</u>
²Открытое акционерное общество «Интеграл», dzsto2@integral.by
³Учреждение Российской Академии Наук Институт проблем механики РАН им. А.Ю. Ишлинского, prosto@ipmnet.ru
⁴ОАО «ГИРЕДМЕТ», <u>icpm@girmet.ru</u>

Рассматривается комплекс вопросов, связанных с оптимизацией процесса быстрой высокотемпературной обработки (БТО) пластин бездислокационного монокристаллического кремния. Приводятся результаты экспериментального изучения методами инфракрасного поглощения, а также оптической и просвечивающей микроскопии дефектной структуры в пластинах, подвергнутых БТО. Анализируется изменение типа, плотности и морфологии дефектов по толщине пластины. С помощью математической модели БТО, описывающей диффузно-рекомбинационные процессы вакансий и межузельных атомов кремния, а также образование вакансионных кластеров, рассчитываются профили концентрации вакансий, плотности и размер вакансионных кластеров по толщине пластины. Распределение суммарной плотности дефектов по толщине пластины сравнивается с расчетным профилем, полученным в данной работе.

УСЛОВИЯ И РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТАЛЬНОГО ИЗУЧЕНИЯ ДЕФЕКТНОЙ СТРУКТУРЫ. СРАВНЕНИЕ С ЧИСЛЕННЫМИ ДАННЫМИ

Наиболее широко известны две разновидности метода внутреннего геттерирования технологических фоновых примесей, основанные на преципитации кислорода в кремнии: 1) традиционный метод создания обедненной преципитатами кислорода областей у обеих поверхностей пластины за счет внешней диффузии кислорода; 2) метод, так называемой «магической» обедненной зоны («magic denuded zone» или MDZ) [1], основанный на ускоренной преципитации кислорода в областях, обогащенных вакансиями. Особенности дефектообразования в пластинах кремния, подвергнутых БТО, исследованы методами оптической микроскопии (ОМ), просвечивающей электронной микроскопии (ПЭМ) и ИК поглощения [2]. Параллельно проводилось сравнение с традиционным методом внутреннего геттерирования. Исследования выполнены на пластинах, вырезанных из монокристаллов СZ-кремния диаметром 200 мм, ориентации (100), р-типа проводимости, удельным сопротивлением 12-14 Ом см и содержанием кислорода $[O_i] = (5-8) \cdot 10^{17}$ см⁻³. Использовались несколько вариантов термообработок: 1) - термообработка в печи при 1100 °C, длительностью до 0,5-8 часов и последующий отжиг при 700 °C, длительностью 24 часа. 2) 10-кратная БТО при 1150 °C с последующим отжигом при 700 °C, длительностью 24 часа. 3) многократные БТО при температуре 1250 °С в течение 25 сек в атмосфере аргона.

¹ Поддержано проектами РФФИ № 10-02-90004-Бел а и БРФФИ № Ф10Р-044

4-ая Международная научная конференция «Материалы и структуры современной электроники», 23–24 сентября 2010 г., Минск, Беларусь С.102–105

Далее пластины выдерживали при 800 °С 4 часа и при 1000 °С 16 часов.

При изготовление тонких фольг для исследований вначале делалась химическая полировка поверхности образцов, удалявшая слой кремния требуемой толщины. Было изготовлено 8 тонких фольг, соответствующих как поверхности исследуемых пластин, так и слоям, отстоящим от нее на 50, 100, 150, 200, 250, 300 и 375 мкм. Определение плотности и распределения кислородсодержащих преципитатов и сопутствующих дефектов в исследуемых образцах осуществляли путем анализа фигур травления после избирательного травления сколов пластин в растворе Янга в течение 5 мин. По ОМ изучение проводилось в режиме интерференционного контраста по Номарскому. При ПЭМ использовался микроскоп JEM 200-CX в дифракционном режиме с ускоряющим напряжением 200 кВ. Концентрация междоузельного кислорода определялась до ($N_{O, исх.}$) и после ($N_{O, TO}$) проведения термообработок.

РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТАЛЬНОГО ИЗУЧЕНИЯ ДЕФЕКТНОЙ СТРУКТУРЫ, СРАВНЕНИЕ С ЧИСЛЕННЫМИ ДАННЫМИ

Сравнительные результаты исследований изменения концентрации междоузельного кислорода, объемной дефектности и размеров «чистой зоны» для традиционного метода внутреннего геттерирования и MDZ-метода приведены в таблице 1. На фотографиях поперечных сколов образцов (рис. 1) в распределении дефектов хорошо видна приповерхностная бездефектная зона протяженностью в зависимости от вида термообработки примерно 10–70 мкм и насыщенные преципитатами центральные области пластин. Граница, разделяющая обе области, несколько размыта, так что наблюдается переходная область с нарастающей плотностью преципитатов. Значение суммарной плотности дефектов в центральной области пластины составляло примерно

Таблица 1

Концентрация межузельного кислорода, объемная плотность дефектов и размер «чистой» зоны после различных видов термообработок

	$N_{O, ucx}$,	$N_{\rm O, TO}$,	$\Delta N_{\rm O},$	Объемная	Размер
Режим отжига	$\times 10^{17}$	$\times 10^{17}$	$\times 10^{17}$	дефектность,	«чистой»
	cm^{-3}	cm^{-3}	см ⁻³	cm^{-3}	зоны, мкм
нет	7,23	7,39	0,16	$8,5.10^{8}$	нет
1100 °С(8 ч) + 700 °С(24 ч)	7,51	7,12	- 0,39	$1,8.10^{9}$	20-35
1100 °С(8 ч)	7,31	6,97	- 0,34	$2,7.10^{8}$	7–20
1100 °С(2 ч) + 700 °С(24 ч)	7,39	7,21	-0,18	$2,2.10^{9}$	17–20
1100 °С(2 ч)	7,40	7,22	-0,18	$4,7.10^{8}$	18–20
1100 °С(30 мин.) + 700 °С	7,34	7,24	-0,10	$2,2.10^{9}$	9–14
(24 ч)					
1100 °С(30 мин.)	7,38	7,25	-0,13	$2,0.10^{8}$	8-12
БТО 1150 °С (10× 30 с) +	7,35	7,29	- 0,06	$2,2.10^{9}$	5-10
700 °С(24 ч)					
БТО 1150 °С (10× 30 с)	7,36	7,35	- 0,01	$3,4.10^{8}$	5-10

4-ая Международная научная конференция «Материалы и структуры современной электроники», 23–24 сентября 2010 г., Минск, Беларусь С.102–105

скола пластины, после БТО 1150 °С (10× 30 с) + 700 °С(24 ч)

8.5·10⁹ см⁻³. Видно, что только высокотемпературный прогрев не позволяет получить высокой плотности преципитатов в глубине пластины. Экспериментальные зависимости суммарной плотности дефектов по толщине пластины для образцов, подвергнутых БТО и последующим термообработкам, а также рассчитанный профиль плотности вакансионных кластеров, приведены на рис. 2. Как следует из представленных данных, ОМ дает более высокие значения в центре пластины по сравнению с ПЭМ.

В приповерхностном слое эти различия исчезают. Распределение расчетной плотности вакансионных кластеров достаточно хорошо соответствует экспериментальным данным в приповерхностном слое. Этот результат получен на основе математической модели [3] с использованием граничных условий Роббина. При условиях Дирихле [4] концентрация вакансий в приповерхностном слое существенно ниже экспериментальной. В центре пластины расчетные данные ближе к результатам, полученным ПЭМ.

Таблица 2

50 мкм	150 мкм	250 мкм	375 мкм
$N_{\Sigma}=5,1\cdot10^{8} \text{ cm}^{-3}$	$N_{\Sigma}=6,0.10^9 \text{ cm}^{-3}$	$N_{\Sigma}=8,9\cdot10^9 \text{ cm}^{-3}$	$N_{\Sigma}=1,1\cdot10^{10} \text{ cm}^{-3}$
ПП – нет	ПП – нет	ПП – 200 нм	ПП -220 - 350 нм
		$3 \cdot 10^8 \mathrm{cm}^{-3}$	$1 \cdot 10^9 \text{см}^{-3}$
ЛПДС0,25 мкм	ЛПДС –1,5 – 2 мкм	ЛПДС -2,0-2,5	ЛПДС –3,5 –4 мкм
(ПП – 200 нм)	(ПП – 180 нм)	мкм (ПП –200 нм)	(ПП –200 нм)
		4,3·10 ⁹ см ⁻³	3·10 ⁹ см ⁻³
ГПДС – 0,4 мкм	ГПДС –0,8 – 1 мкм	ГПДС –0,4 мкм	ГПДС –0,5 мкм
		$4 \cdot 10^9 \text{ cm}^{-3}$	5,5·10 ⁹ см ⁻³
ДУ – нет	ДУ – 2,5 мкм	ДУ – нет	ДУ –2 <u>,</u> 5 мкм
			$6 \cdot 10^8 \mathrm{cm}^{-3}$
ПДП – нет	ПДП – нет	ПДП – 500 нм,	ПДП – 500 нм
		$3 \cdot 10^8 \mathrm{cm}^{-3}$	9·10 ⁸ см ⁻³

Плотности, размеры и типы дефектов на различном расстоянии от поверхности пластины

4-ая Международная научная конференция «Материалы и структуры современной электроники», 23–24 сентября 2010 г., Минск, Беларусь С.102–105

Плотности, размеры и типы наблюдаемых дефектов приведены в таблице 2. Они представляют собой пластинчатые преципитаты (ПП) оксида кремния и связанные с ними вторичные дислокационные дефекты: преципитатно-дислокационные скопления (ПДС), дефекты упаковки (ДУ) и полные дислокационные петли (ПДП).

Характерно, что в приповерхностных областях пластины (глубина ≤ 50 мкм) средние размеры выявляемых ПДС – линейных (ЛПДС) и глобулярных (ГПДС) – оказались заметно меньше, чем в фольгах, изготовленных из более глубоких участ-ков пластины. Пластинчатые преципитаты, свободные от дислокационных петель (ДП) и заполненные ими, характерны для фольг, изготовленных из фрагментов пластины, отстоящих от ее поверхности на глубину не менее 200 мкм.

ЛИТЕРАТУРА

1. *Falster, R. J.* Process for producing thermally annealed wafers having improved internal gettering: US patent 6686620, primary class 438/473, publication 3.02.2004 / R. J.Falster, M. J.Binns, H. W.Korb. MEMC Electronics Materials. Inc

2. *Verezub*, *N. A.* Theoretical and experimental study of the formation of grown-in and as-grown microdefects in dislocation-free silicon single crystals grown by Czochralski method / N. A. Verezub [et al.] // Crystallography reports. 2005. V. 50 (S1). P. S159.

3. *Prostomolotov, A. I.* Integrated modeling and verification of 2D grown-in microdefect distributions in CZ dislocation-free silicon single crystals / A. I. Prostomolotov, N. A. Verezub // Phys. Stat. Sol. (c). 2009. V. 6. № 8. P. 1878.

4. *Prostomolotov, A. I.* Simplistic approach for 2D CZ grown-in microdefect modeling / A. I. Prostomolotov, N. A. Verezub // Phys. Stat. Sol. (c). 2009. V. 6. № 8. P. 1874.