СРАВНИТЕЛЬНЫЙ АНАЛИЗ ФИЗИКО-МЕХАНИЧЕСКИХ СВОЙСТВ ЭПИТАКСИАЛЬНЫХ СЛОЕВ КРЕМНИЯ, ПОЛУЧЕННЫХ ГАЗОФАЗНОЙ И ЖИДКОФАЗНОЙ ЭПИТАКСИЕЙ

Д. И. Бринкевич¹, В. С. Просолович¹, Ю. Н. Янковский¹, Н. В. Вабищевич², С. А. Вабищевич²

^ТБелорусский государственный университет, <u>brinkevich@bsu.by</u> ²Полоцкий государственный университет, <u>vabser@psu.by</u>

Эпитаксиальные слои (ЭС) кремния широко используются при изготовлении полупроводниковых приборов и интегральных микросхем. Несмотря на то, что в большинстве применений на первый план выступают электрофизические свойства ЭС, их физико-механические характеристики также играют значительную роль, поскольку на определенных стадиях технологического процесса они подвергаются различным механическим воздействиям (скрайбирование, посадка в корпус и т. д.). При этом в пленках могут развиваться сильные внутренние напряжения, приводящие к генерации микродефектов и снижению выхода годных приборов. Одним из способов исследования физико-механических свойств ЭС является метод индентирования, позволяющий изучать процессы развития деформации в очень малых объемах, что весьма важно, учитывая малую толщину ЭС [1–2].

В настоящей работе исследована микротвердость ЭС кремния, полученных методами газофазной и жидкофазной эпитаксии. Газофазная эпитаксия (ГФЭ) осуществлялась на стандартной промышленной установке при температуре $1150-1180~{\rm CC}$. Скорость роста ЭС составляла $0.8-1.0~{\rm Mkm/muh}$. Жидкофазная эпитаксия (ЖФЭ) проводилась посредством кристаллизации из растворов-расплавов на основе олова. Выбор в качестве растворителя Sn обусловлен тем, что указанная изовалентная примесь образует тетраэдрическую систему химических связей и в равновесных условиях не проявляет электрической активности в кремнии. ЭС выращивали в графитовых кассетах по сдвиговой технологии в интервале температур $1050-1000~{\rm CC}$. Охлаждение растворов-расплавов (P-P) осуществляли со скоростью $0.1-1.0~{\rm CC/muh}$. Содержание Sn по данным нейтронно-активационного анализа во всех исследовавшихся образцах было $(3-6)\cdot10^{19}~{\rm cm}^{-3}$, что близко к пределу растворимости Sn при температуре роста ЭС. Часть образцов получали из P-P, содержащих редкоземельный элемент Yb.

Удельное электрическое сопротивление ρ измерялось 4-зондовым методом. Толщина пленок определялась с помощью декорирования купоросным раствором сферического шар-шлифа. Параметры исследовавшихся образцов приведены в таблицах 1 и 2. Плотность дислокаций ($N_{\rm Z}$) контролировалась травлением в селективном травителе Райта длительностью 5 минут. ЭС, полученные газофазной эпитаксией, были бездислокациоными ($N_{\rm Z} < 10^2~{\rm cm}^{-2}$). При ЖФЭ плотность дислокаций была существенно выше и варьировалась в пределах $10^4 - 10^7~{\rm cm}^{-2}$.

Таблица 1 Параметры ЭС кремния, полученных жидкофазной эпитаксией

№ образ- ца	Подложка	Питатель	Содер жание Yb в P-P, %	ρ, Ом∙см	Толщи- на, мкм	<i>H</i> _{ЭС} , ГПа	<i>Н</i> _п , ГПа	Z _{ЭС} при P = 100 г
1	<100>	БКЭФ		3	7	9,9	11,1	2,9
	КЭФ-4,5							
2	<111>	БКЭФ	-	4	9	11,0	11,9	3,3
	КДБ-80							
3	<111>	КДБ-80	_	4	8	11,2	12,1	3,5
	КДБ-80							
4	<111>	КДБ-80	0	1	16	11,9	12,5	3,4
	КДБ-80							
5	<111>	КДБ-80	0,03	1,2	14	10,4	12,9	3,6
	КДБ-80							
6	<111>	КДБ-80	0,05	1,5	12	10,3	12,7	3,4
	КДБ-80		•					
7	<111>	КДБ-80	0,5	0,4	16	10,8	12,9	3,7
	КДБ-80							

Таблица 2

Параметры ЭС кремния, полученных газофазной эпитаксией

No	Подложка	ЭС	ρ,	Толщина,	$H_{\mathrm{ЭC}}$,	H_{Π} ,
	Подложка	30	Ом·см	MKM	ГПа	ГПа
1	<100> КЭС-0,01	КЭФ5,0	5,0	8	11,3	10,9
2	<111> КДБ-10	КЭФ3,0	3,0	13,5	11,5	11,2
3	<100> КДБ-10	КЭФ3,6	3,6	13,5	11,6	11,3
4	<100> КДБ-0,005	КДБ25	25	35	11,7	11,7
5	<111> K3C-0,01	КЭФ1,25	1,25	10	11,3	11,0

Измерения микротвердости (H) проводились по стандартной методике на приборе ПМТ-3 серией из 40–50 испытаний. Погрешность измерения H составляла 3 % с доверительной вероятностью 0,95. Индентирование проводилось как со стороны эпитаксиального слоя ($H_{\rm ЭC}$), так и со стороны подложки ($H_{\rm n}$). Значения $H_{\rm ЭC}$ и $H_{\rm n}$ в таблицах 1 и 2 приведены для нагрузки 100 г. Микрохрупкость оценивалась по наличию трещин и сколов у отпечатков по стандартной 5-бальной методике [3].

Зависимости микротвердости от нагрузки (рис. 1 и 2) имели вид, характерный для непластичных кристаллов: микротвердость уменьшалась на 5–20 % при увеличении нагрузки от 20 до 100 г, а при дальнейшем возрастании нагрузки она изменялась не столь существенно. Такое приповерхностное упрочнение монокристаллов Si обусловлено наличием тонкого приповерхностного слоя с высокой твердостью, обусловленной димеризацией химических связей на поверхности полупроводника [4]. При нагрузках свыше 200 г вокруг большого количества (до 40–50 %) отпечатков наблюдались длинные трещины и сколы, что затрудняет проведение измерений.

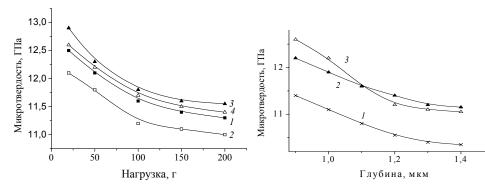


Рис. 1. Зависимость микротвердости от нагрузки для эпитаксиальных структур, полученных газофазной эпитаксией. Образцы 2 (кривые 1, 2) и 3 (кривые 3, 4) из табл. 2. Индентирование со стороны эпитаксиального слоя (1, 3) и со стороны подложки (2, 4)

Рис. 2. Зависимость микротвердости эпитаксиальных слоев, полученных методом жидкофазной эпитаксии, от глубины погружения индентора. Номера кривых соответствуют номерам образцов в таблице 1

Во всех исследовавшихся образцах наблюдалось нормальное гауссово распределение величин H, что свидетельствует об отсутствии крупных включений второй фазы. Ширина случайного распределения измеренных величин микротвердости ΔH составляла ~ 3 %, увеличиваясь при уменьшении нагрузки. Существенной зависимости ΔH от метода эпитаксии и ориентации подложки не наблюдалось. Наличие дислокаций приводило к увеличению значений ΔH до 6 %. В сильно легированных Yb эпитаксиальных пленках величина ΔH при стандартных нагрузках достигала 9–10 %, а при нагрузке 20 г на распределении микротвердости наблюдалось два близко расположенных слабовыраженных максимума. Такой характер случайного распределения H обусловлен наличием в сильно легированных Yb эпитаксиальных слоях включений второй фазы (скоплений атомов лантаноида).

Заметного влияния легирующих примесей (фосфор, бор) на величину микротвердости, которое наблюдалось в монокристаллах Si авторами [5], в наших экспериментах (табл. 2) не обнаружено. Вероятнее всего, это обусловлено следующими причинами. Во-первых, концентрационный эффект проявляется при малых (до 20 г) нагрузках. В нашей работе величина нагрузки превышала это значение. Во-вторых, в процессе эпитаксии пластины кремния подвергаются длительной (десятки минут) высокотемпературной термообработке (ТО), что приводит к возрастанию микротвердости и нивелированию концентрационного эффекта.

Микротвердость подложек во всех исследовавшихся образцах была выше, чем H исходных (до эпитаксии) пластин. При ЖФЭ эффект упрочнения выражен сильнее (значения H возрастали на 20 % с 10,3 до \sim 12,7 ГПа в образце 6 табл. 1), чем при ГФЭ (H_{Π} возрастала на 4–7 % до значений 10,9 – 11,7 Гпа, см. табл.2). Указанное обстоятельство связано с упрочняющим действием термообработки, которое отмечалось ранее в работе [6]. Отметим, что увеличение длительности термообработки при газофазной эпитаксии (и соответственно, увеличение толщины ЭС) приводило к росту значений H_{Π} . Об этом свидетельствует прямая корреляция величины H_{Π} и толщины ЭС, полученных газофазной эпитаксией.

Более выраженное упрочнение подложки в структурах, полученных жидкофазной эпитаксией, обусловлено несколькими причинами. Во-первых, длительность ТО при ЖФЭ значительно выше, чем при ГФЭ, что должно приводить к более существенному росту микротвердости. Во-вторых, к упрочнению должна приводить генерация дислокаций в процессе жидкофазной эпитаксии. Так, действительно исследование поверхности косого шлифа оптической микроскопией после селективного травления показало, что плотность дислокаций возрастала по мере удаления от поверхности ЭС и составляла у границы раздела ЭС — подложка $\sim 2\cdot10^6$ см $^{-2}$, а в глубине подложки — около $1\cdot10^7$ см $^{-2}$. Таким образом, плотность дислокаций в подложке на 5 порядков превышает плотность дислокаций в стандартном монокристаллическом кремнии. Отметим, что плотность дислокаций была наиболее высока в образцах 4—7 (табл. 1), в которых эффект упрочнения подложки в процессе ЖФЭ выражен максимально.

На микротвердость может также оказывать существенное влияние и атмосфера выращивания. ГФЭ проводится в хлорсодержащей атмосфере, которая создает пересыщение по вакансиям [7] и способствует формированию в приповерхностном слое вакансионных дефектов. Указанное обстоятельство должно приводить к разупрочнению кремния [8].

Прочностные характеристики эпитаксиальных слоев существенно зависели от метода получения (газофазная или жидкофазная эпитаксия). Так, микротвердость ЭС, выращенных методом газофазной эпитаксии, была незначительно (на 3–4 %, что близко к погрешности измерений) выше микротвердости подложки (рис. 1 и табл. 2). Величина H не проявляла также существенной зависимости от ориентации подложки, несмотря на то, что микротвердость монокристаллов кремния с ориентацией <111> обычно выше на 10–15 % выше микротвердости Si с ориентацией <100>. Это обусловлено тем, что при $\Gamma\Phi$ Э пластины с ориентацией <111> разориентируются на 5° для снижения плотности упаковки.

С другой стороны, для ЭС, выращенных методом ЖФЭ, наблюдалась сильная зависимость от ориентация подложки. Так, микротвердость эпислоев, полученных на подложках с ориентацией <100> меньше на 10%, чем на подложках с ориентацией <111>. Указаный эффект связан с более плотной упаковкой решетки кремния вдоль направления <111>.

Кроме того, микротвердость ЭС Si:Sn, полученных жидкофазной эпитаксией, была ниже на 10–15 % микротвердости монокристаллического кремния соответствующей ориентации. Эффект разупрочнения ЭС Si:Sn может быть обусловлен суммарным действием двух причин. Во-первых, увеличением параметра решетки вследствие легирования примесью Sn, имеющей больший, чем у Si ковалентный радиус, что приводит к увеличению длины связи и, как следствие, к уменьшению $H_{\rm ЭС}$. Ранее [6], аналогичный эффект разупрочнения наблюдался в монокристаллическом кремнии, легированном Ge. Во-вторых, очисткой ЭС от технологических примесей. Так, геттерирующий эффект при выращивании пленок из P-P на основе Sn отмечался ранее по отношению к углероду и кислороду, а также к металлическим примесям внедрения (Fe,Ti и т. д.) [9]. Поскольку указанные примеси блокируют движение дислокаций [10], их отсутствие должно приводить к эффекту разупрочнения.

Легирование ЭС редкоземельной примесью Yb (рис. 3) существенно (на 20–25 %) снижает их микротвердость. Однако, при увеличении концентрации иттербия в растворе-расплаве от 0,005 до 0,5 масс. % наблюдается слабое увеличение микротвердо-

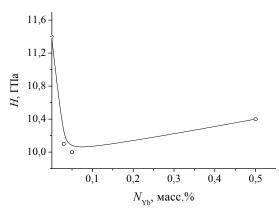


Рис. 3. Зависимость микротвердости
ЭС от концентрации иттербия
в растворе-расплаве. Нагрузка – 200 г

сти. В сильно легированных Yb (> 0,2 масс. % в P-P) эпитаксиальных слоях также имело место существенное уширение случайного распределения величин микротвердости, что свидетельствует об ухудшении однородности пленки.

Экспериментальные данные могут быть объяснены с учетом геттерирующего эффекта Yb в растворе-расплаве по отношению к технологическим примесям [11]. Очистка от технологических примесей внедрения приводит к эффекту разупрочнения [8]. С другой стороны, к снижению микротвердости ЭС Si:Sn,Yb может также приводить

увеличение параметра решетки пленки вследствие легирования примесью иттербия, имеющей больший чем у кремния ковалентный радиус. Небольшое увеличение микротвердости в сильнолегированных ЭС обусловлено наличием в них мелких включений второй фазы (скоплений атомов лантаноида), которые способны блокировать движение дислокаций.

Микрохрупкость эпитаксиальных структур существенной зависимости от метода получения ЭС не проявляла и определялась в основном ориентацией подложки. Так, при нагрузке 100 г в структурах с ориентацией подложки <100> она варьировалась в пределах 2,7–3,0 балла, а при ориентации <111> составляла 3,3–3,7 в зависимости от образца. Микрохрупкость снижается при уменьшении нагрузки и при P=20 г ее характерные значения составляли от 1,4 до 1,6 баллов. Доля разрушенных отпечатков не превышает 10–20 % даже при максимальной нагрузке 200 г.

Таким образом, установлено, что прочностные характеристики ЭС существенно зависят от метода получения (газофазная или жидкофазная эпитаксия) и определяются их дефектно-примесным составом. Показано, что технологические примеси и дислокации упрочняют эпитаксиальные структуры. Добавление в раствор-расплав примеси Yb снижает микротвердость выращиваемых эпитаксиальных пленок.

ЛИТЕРАТУРА

- 1. *Шугуров, А. Р.* Особенности определения механических характеристик тонких пленок методом наноиндентирования / А. Р. Шугуров, А. В. Панин, К. В. Осколков // Физика твердого тела. 2008. Т. 50, № 6. С. 1007.
- Волынский, А. Л. Об оценке прочности твердых тел в слоях нанометрового диапазона / А. Л. Волынский, С. В. Моисеева, Л. М. Ярышева, Н. Ф. Бакеев // Доклады АН. 2006. Т. 409. № 1. С. 64.
- 3. Концевой, Ю. А. Пластичность и прочность полупроводниковых материалов и структур / Ю. А. Концевой, Ю. М. Литвинов, Э. А. Фаттахов. М.: Радио и связь, 1982. С. 101.
- 4. *Герасимов, А. Б.* Физическая природа изменения микротвердости по глубине образца / А. Б. Герасимов // Физика и химия обработки материалов. 2004. № 3. С. 71.
- 5. *Герасимов, А. Б.* Влияние рода и концентрации мелких примесей на микротвердость и фотомеханический эффект в полупроводниках / А. Б. Герасимов, Г. Д. Чирадзе / Физика и техника полупроводников. 2001. Т. 35. № 3. С. 385.

4-ая Международная научная конференция «Материалы и структуры современной электроники», 23–24 сентября 2010 г., Минск, Беларусь C.38–43

- 6. *Бринкевич, Д. И.* Влияние примесей IIIB и IV групп Периодической системы на микротвердость монокристаллического кремния / Д. И. Бринкевич, С. А. Вабищевич, В. В. Петров // Микроэлектроника. 1997. Е.2. № 4. С. 297.
- 7. Выжигин, Ю. В. Влияние атмосферы термообработки на образование центров с глубокими уровнями / Ю. В. Выжигин, Н. А. Соболев, Б. Н. Грессеров, Е. И. Шек // Физика и и техника полупроводников. 1991. Т. 25. № 8. С. 1324.
- 8. *Вабищевич, С. А.* Микротвердость пластин кремния, прошедшего геттерирующую обработку / С. А. Вабищевич, Н. В. Вабищевич, Д. И. Бринкевич // Перспективные материалы. 2005. № 2. С. 20.
- 9. *Сапаев, Б.* Получение и фотоэлектрическите свойства эпитаксиального слоя Si, выращенного из расплава олова в техническом кремнии / Б. Сапаев, А. С. Саидов, Ш. И. Ибрагимов // Письма в ЖТФ. 2005. Т. 31. № 12. С. 56–62.
- 10. *Shirokov, V. V.* Effect of dynamic blocking of dislocations by interstitial atoms on mechanical properties of metals and alloys / V. V. Shirokov, O. V. Pavlyna, O. V. Shirokov // Functional materials. 2004. V. 11. № 2. P. 405.
- 11. *Борщенский, В. В.* Влияние легирования германием и гадолинием на термостабильность монокристаллического бездислокационного кремния / В. В. Борщенский // Высокочистые вещества. 1991. № 4. С. 61.