Краткие сообщения

УДК 519.8

В.А. ЕМЕЛИЧЕВ, А.А. ПЛАТОНОВ

ОБ УСТОЙЧИВОСТИ ВЕКТОРНОЙ ТРАЕКТОРНОЙ ЗАДАЧИ С ПАРАМЕТРИЧЕСКИМ ПРИНПИПОМ ОПТИМАЛЬНОСТИ

The formula of stability radius of a vector linear combinatorial problem is obtained, its principle of optimality defines by a partitioning of partial criteria set into groups with Pareto relation within each group and the jointly-extremal relation between them.

Рассмотрим типичную векторную (n-критериальную) комбинаторную задачу. Пусть на системе подмножеств (траекторий) $T \subseteq 2^E$, $|T| \ge 2$, $E = \{e_1, e_2, ..., e_m\}$, $m \ge 2$, задан векторный критерий $f(t,A) = (f_1(t,A), f_2(t,A), ..., f_n(t,A)) \to \min_{t \in T}$, частными критериями которого являются линейные функции

$$f_i(t,A) = \sum_{j \in N(t)} a_{ij}, \quad i \in N_n = \{1,2,...,n\}, n \ge 1,$$

где $A = [a_{ij}]_{n \times m} \in \mathbf{R}^{n \times m}$, $N(t) = \{j \in N_m : e_j \in t\}$. Будем полагать, что $f_i(\emptyset, A) = 0$.

Введем бинарное отношение \succ , порождающее в пространстве \mathbf{R}^d любой размерности $d \in \mathbf{N}$ принцип оптимальности по Парето [1].

Пусть $s \in N_n$, $N_n = \bigcup_{r \in N_s} J_r$ – разбиение множества N_n на s групп, т. е. $J_r \neq \varnothing$, $r \in N_s$; $p \neq q \Rightarrow J_p \cap J_q = \varnothing$. Для этого разбиения введем множество $T^n(A,J_1,J_2,...,J_s)$ обобщенно-эффективных, или иначе $(J_1,J_2,...,J_s)$ -эффективных, траекторий согласно формуле

$$T^{n}(A, J_{1}, J_{2}, ..., J_{s}) = \{t \in T : \exists k \in N_{s} \ \forall t' \in T \ (f_{J_{k}}(t, A) \succeq f_{J_{k}}(t', A))\}.$$
 (1)

Здесь $\stackrel{-}{\succ}$, как обычно, означает отрицание отношения $\stackrel{-}{\succ}$, $f_J(t,A) = (f_{i_1}(t,A), f_{i_2}(t,A), ..., f_{i_h}(t,A))$, $J = \{i_1, i_2, ..., i_h\} \subseteq N_n$, $i_1 < i_2 < ... < i_h$.

Очевидно, что любая N_n -эффективная траектория $t \in T^n(A, N_n)$ (s = 1, т. е. множество N_n – одна группа) является оптимальной по Парето в пространстве всех траекторий T. Поэтому множество N_n -эффективных траекторий $T^n(A, N_n)$ является множеством Парето, которое будем обозначать $P^n(A)$.

В другом крайнем случае, когда s = n, множеством обобщенно-эффективных траекторий $T^n(A,\{1\},\{2\},...,\{n\})$ является множество совокупно-экстремальных [2] траекторий, которое будем обозначать $C^n(A)$.

Итак, в данном контексте под параметризацией принципа оптимальности понимается введение такой характеристики бинарного отношения предпочтения, которая позволяет связать известные функции выбора — паретовскую и совокупно-экстремальную.

Векторную задачу поиска множества $T^n(A,J_1,J_2,...,J_s)$ обозначим через $Z^n(A,J_1,J_2,...,J_s)$. Ясно, что $T^1(A,N_1)$ – множество оптимальных траекторий скалярной (однокритериальной) линейной комбинаторной задачи $Z^1(A,N_1)$, где $A \in \mathbf{R}^m$, в схему которой вкладываются многие экстремальные задачи на графах, задачи булева программирования, ряд задач теории расписаний и др.

Следуя [3, 4], радиусом устойчивости векторной задачи $Z^n(A, J_1, J_2, ..., J_s)$ назовем число

$$\rho^{n}(A, J_{1}, J_{2}, \dots, J_{s}) = \begin{cases} \sup \Xi, & \text{если } \Xi \neq \emptyset, \\ 0, & \text{если } \Xi = \emptyset, \end{cases}$$

где $\Xi = \{\varepsilon > 0: \forall B \in \Omega(\varepsilon) \ (T^n(A+B,J_1,J_2,...,J_s) \subseteq T^n(A,J_1,J_2,...,J_s))\}, \ \Omega(\varepsilon) = \{B \in \mathbf{R}^{n \times m}: \|B\| < \varepsilon\},$ $\|B\| = \max\{|b_{ij}|: (i,j) \in N_n \times N_m\}, \ B = [b_{ij}]_{n \times m}.$ Ясно, что при выполнении равенства $T^n(A,J_1,J_2,...,J_s) = T$ радиус устойчивости $\rho^n(A,J_1,J_2,...,J_s) = \infty.$ Поэтому далее будем рассматривать лишь так называемые нетривиальные задачи, т. е. задачи, для которых $\overline{T^n}(A,J_1,J_2,...,J_s) := T \setminus T^n(A,J_1,J_2,...,J_s) \neq \emptyset.$

Для любого непустого подмножества $J\subseteq N_n$ введем обозначение

$$P(A,J) = \{t \in T : \forall t' \in T \ (f_I(t,A) \succeq f_I(t',A))\}.$$

Тогда имеем $P(A, N_n) = P^n(A)$, и поэтому ввиду (1) получаем

$$T^{n}(A, J_{1}, J_{2}, ..., J_{s}) = \{t \in T : \exists k \in N_{s} \ (t \in P(A, J_{k}))\}.$$
(2)

Кроме того, положим

$$\Delta(t,t') = |(t \cup t') \setminus (t \cap t')|,$$

$$g_i(t,t',A) = f_i(t,A) - f_i(t',A), \quad i \in N_n.$$

Теорема. Для радиуса устойчивости $\rho^n(A, J_1, J_2, ..., J_s)$ нетривиальной задачи $Z^n(A, J_1, J_2, ..., J_s)$, $n \ge 1$, справедлива формула

$$\rho^{n}(A, J_{1}, J_{2}, ..., J_{s}) = \min_{k \in N_{s}} \min_{t \in \overline{T}^{n}(A, J_{1}, J_{2}, ..., J_{s})} \max_{t' \in T^{n}(A, J_{1}, J_{2}, ..., J_{s})} \min_{i \in J_{k}} \frac{g_{i}(t, t', A)}{\Delta(t, t')}.$$
(3)

Доказательство. Для краткости дальнейшего изложения правую часть формулы (3) обозначим ϕ , а левую – ρ . Учитывая непустоту множеств $\overline{T^n}(A,J_1,J_2,...,J_s)$ и $T^n(A,J_1,J_2,...,J_s)$, а также неравенство $\Delta(t,t')>0$, заключаем, что число ϕ неотрицательно.

Сначала убедимся в справедливости неравенства $\rho \ge \varphi$. При $\varphi = 0$ это неравенство очевидно. Пусть $\varphi > 0$, $B \in \Omega(\varphi)$. Тогда согласно определению числа φ для любого индекса $k \in N_s$ и всякой траектории $t \in \overline{T^n}(A,J_1,J_2,...,J_s)$ существует такая траектория $t' \in T^n(A,J_1,J_2,...,J_s)$, что справедливы неравенства $g_i(t,t',A) \ge \varphi \Delta(t,t') > \|B\| \Delta(t,t')$, $i \in J_k$. Отсюда вытекает, что для любого индекса $i \in J_k$ верны соотношения

$$g_i(t,t',A+B) = g_i(t,t',A) + g_i(t,t',B) \ge g_i(t,t',A) - ||B|| \Delta(t,t') > 0.$$

Из сказанного следует, что для любых $B \in \Omega(\varphi)$, $t \in T^n(A,J_1,J_2,...,J_s)$, $k \in N_s$ существует траектория $t' \in T^n(A,J_1,J_2,...,J_s)$ с условиями $f_i(t,A+B) > f_i(t',A+B)$, $i \in J_k$, т. е. $f_{J_k}(t,A+B) > f_{J_k}(t',A+B)$. Это значит, что для каждого индекса $k \in N_s$ траектория $t \notin P^n(A+B,J_k)$. Поэтому согласно (2) $t \in \overline{T^n}(A+B,J_1,J_2,...,J_s)$. Итак, для любой матрицы $B \in \Omega(\varphi)$ верно включение $T^n(A+B,J_1,J_2,...,J_s) \subseteq T^n(A,J_1,J_2,...,J_s)$. Следовательно, выполняется неравенство $\varphi \geq \varphi$.

Остается доказать, что $\rho \le \varphi$. Согласно определению числа $\varphi \ge 0$ найдутся индекс $p \in N_s$ и траектория $t^* \in \overline{T^n}(A,J_1,J_2,...,J_s)$ такие, что для всякой траектории $t \in T^n(A,J_1,J_2,...,J_s)$ существует индекс $q \in J_p$ с условием

$$g_q(t^*, t, A) \le \varphi \Delta(t^*, t). \tag{4}$$

Построим матрицу $B^* = [b_{ij}^*]_{n \times m}$ по правилу

$$b_{ij}^* = \begin{cases} -\alpha, & \text{если } i = q, j \in N(t^*), \\ \alpha, & \text{если } i = q, j \notin N(t^*), \\ 0, & \text{если } i \in N_n \setminus \{q\}, j \in N_m, \end{cases}$$

где $\phi < \alpha < \varepsilon$. Очевидно, что $\|B^*\| = \alpha$, т. е. $B^* \in \Omega(\varepsilon)$. Учитывая строение матрицы B^* и неравенство (4), получаем $g_a(t^*, t, A + B^*) = g_a(t^*, t, A) - \alpha \Delta(t^*, t) < g_a(t^*, t, A) - \phi \Delta(t^*, t) \leq 0$. В результате имеем

$$\forall \varepsilon > \varphi \quad \exists B^* \in \Omega(\varepsilon) \quad \exists p \in N_s \quad \forall t \in T^n(A, J_1, J_2, \dots, J_s) \quad (f_{J_s}(t^*, A + B^*) \succeq f_{J_s}(t, A + B^*)). \tag{5}$$

Далее рассмотрим два возможных случая.

Случай 1: $t^* \in T^n(A+B^*,J_1,J_2,...,J_s)$. Тогда ввиду $t^* \in \overline{T^n}(A,J_1,J_2,...,J_s)$ очевидна формула

$$\forall \varepsilon > \varphi \quad \exists B^* \in \Omega(\varepsilon) \quad (T^n(A + B^*, J_1, J_2, ..., J_s) \not\subseteq T^n(A, J_1, J_2, ..., J_s)). \tag{6}$$

Случай 2: $t^* \in \overline{T^n}(A+B^*,J_1,J_2,...,J_s)$. Тогда $t^* \notin P(A+B^*,J_p)$ и в силу внешней устойчивости [1] Парето $P(A+B^*,J_n)$ существует такая траектория $t^0 \in P(A+B^*,J_n)$, множества $f_{J_p}(t^*,A+B^*) \succ f_{J_p}(t^0,A+B^*)$. Отсюда согласно (5) траектория $t^0 \in \overline{T^n}(A,J_1,J_2,...,J_s)$ и благодаря (2) имеем $t^0 \in T^n(A+B^*,J_1,J_2,...,J_s)$. Это значит, что вновь верна формула (6).

Объединяя эти два случая, заключаем, что при любом числе $\varepsilon > \varphi$ справедливо неравенство $\varphi < \varepsilon$. Следовательно, р ≤ ф. Теорема доказана.

Из теоремы вытекают следующие известные результаты.

Следствие I [3]. Для радиуса устойчивости нетривиальной задачи $Z^{n}(A, N_{n})$ с паретовским принципом оптимальности справедлива формула

$$\rho^{n}(A, N_{n}) = \min_{t \in P^{n}(A)} \max_{t' \in P^{n}(A)} \min_{i \in N_{n}} \frac{g_{i}(t, t', A)}{\Delta(t, t')}.$$
(7)

Следствие 2 [4]. Для радиуса устойчивости нетривиальной задачи $Z^n(A,\{1\},\{2\},...,\{n\})$ с совокупно-экстремальным принципом оптимальности верна формула

$$\rho^{n}(A,\{1\},\{2\},...,\{n\}) = \min_{i \in N_{n}} \min_{t \in C^{n}(A)} \max_{t' \in C^{n}(A)} \frac{g_{i}(t,t',A)}{\Delta(t,t')}.$$
 (8)

Здесь $\overline{P^n}(A) = T \setminus P^n(A)$, $\overline{C^n}(A) = T \setminus C^n(A)$. Частным случаем (7) и (8) является известная формула радиуса устойчивости скалярной (n=1) линейной траекторной задачи [5].

В заключение отметим, что другие виды параметризации принципов оптимальности в векторных задачах дискретной оптимизации рассматривались в [6-9], где были получены аналогичные количественные характеристики различных типов устойчивости комбинаторных задач и задач теории игр.

- 1. Подиновский В.В., Ногин В.Д. Парето-оптимальные решения многокритериальных задач. М., 1981.
- 2. Шоломов Л.А. Логические методы исследования дискретных моделей выбора. М., 1989.
- 3. Емеличев В.А., Кравцов М.К. // Кибернетика и системный анализ. 1995. № 4. С. 137.
- 4. Бухтояров С.Е., Емеличев В.А. // Вестн. БГУ. Сер. 1. 2002. № 3. С. 84.
- 5. Леонтьев В. К. // Проблемы кибернетики. 1979. Вып. 35. С. 169.
- 6. Бухтояров С.Е., Емеличев В.А., Степанишина Ю.В. // Кибернетика и системный анализ. 2003. № 4. С. 155. 7. Бухтояров С.Е., Емеличев В.А. // Дискрет. анализ и исслед. операций. Сер. 2. 2003. Т. 10. № 2. С. 3.
- 8. Емеличев В.А., Кузьмин К.Г. // Изв. РАН. Теория и системы управления. 2006. № 2. С. 96.
- 9. Бухтояров С.Е., Емеличев В.А. // Журн. вычисл. математики и мат. физики. 2006. Т. 46. № 7. С. 1258.

Владимир Алексеевич Емеличев - доктор физико-математических наук, профессор кафедры уравнений математической физики.

Андрей Александрович Платонов - студент 5-го курса механико-математического факультета.