ОСОБЕННОСТИ ФОРМИРОВАНИЯ ЧЕРНО-БУРЫХ ПОЧВ В ГОРАХ ПАМИРА, ДАРВАЗА И ЮГО-ЗАПАДНОГО ТАДЖИКИСТАНА

Чербарь В. В.

Институт почвоведения, агрохимии и защиты почв им. Н. А. Димо

На наличие почв с черно-бурой окраской гумусового профиля в горах Средней Азии, окаймляющих Ферганскую долину, впервые указал С. С. Неуструев [3]. Он охарактеризовал их как темноцветные мощные почвы ореховых лесов с развитым карбонатным горизонтом и отметил черноземовидность. В 1947 г. ЭТИ почвы были описаны ИХ И. П. Герасимовым и Ю. А. Ливеровским [1]. Они определили их как «современными релитовыми почвами» и назвали чернобурыми почвами ореховых лесов. Критерием реликтовости, при этом, они посчитали генетическое несоответствие ЭТИХ почв современным **УСЛОВИЯМ** почвообразования. По их мнению, ореховые леса Средней Азии являются совершенно уникальным природным образованием. Биологи рассматривают их как обедненный реликт мезофильных тургайских лесов третичного периода, которые преемственно сохранились в более влажных и относительно теплых условиях гор Южной Киргизии.

Название почв ореховых лесов Киргизии черно-бурыми, на наш взгляд, удачное. Мы согласны и с реликтовой трактовкой происхождения ореховых лесов, но черно-бурые почвы считаем не реликтовыми, а современными эндемичными, т. е. соответствующими определенным локальным условиям почвообразования. Эти почвы распространены, как правило, небольшими ареалами. В. Я. Кутеминский [2] описал аналогичные почвы и в лугово-степном поясе гор Таджикистана, называя их лугово-степными темноцветными.

Проведенные нами исследования на Памире выявили, что наличие ореховых лесов не является обязательным условием эволюции чернобурых почв. На Дарвазском хребте Памира и на хребтах Юго-Западного Таджикистана в умеренно теплом поясе ксерофильного редколесья (высота $2\,000-2\,500\,$ м, $\Sigma t^\circ > 10^\circ = 2\,000-3\,100^\circ$) и в умереннохолодном поясе высокотравных луговых степей (высота $2\,500-3\,000\,$ м, $\Sigma t^\circ > 10^\circ = 900-2\,000^\circ$) зональными типами почв являются горные темно-бурые, а эндемичными - горные черно-бурые почвы [4].

Южные отроги Дарвазского хребта относятся к бассейну р. Пяндж, защищены гребнем хребта от проникновения холодных антициклонов и характеризуются более аридным климатом, хотя общее количество атмосферных осадков в горном поясе (высоты от 2 000 до 3 000 м) примерно такое же, как и на северных отрогах. В этой части хребта и в

верховьях боковых долин хребта распространены только темно-бурые почвы.

Северные отроги Дарвазского хребта относятся к бассейну р. Оби-Хингоу. Окаймляющие бассейн с запада среднегорья Юго-Западного Таджикистана, благодаря небольшой высоты, не являются препятствием для проникновения на территории бассейна, как циклонов, так и низко циркулирующих местных влажных воздушных масс, образующихся в результате испарения в начале лета воды из почв на всей территории Юго-Западного Таджикистана.

Темно-бурые и черно-бурые почвы формируются при примерно атмосферных величине годовой сумы коэффициента увлажнения (КУ) 1 000-1 100 мм в ксерофитном лесном умеренно теплом поясе (KY = 1,0-1,5) и 1100-1300 мм в лугово-степном умеренно холодном поясе (КУ = 1,5-2,0). Но бассейн р. Оби-Хингоу является своеобразной глубокой внутригорной экологической нишей. В пределах данной ниши, благодаря вторичной циркуляции местных влажных воздушных масс, идущих с запада, и экранирующей роли расположенного восточнее высокого хребта, сухой период в атмосфере, характерный для всей Средней Азии, наступает примерно на 30 дней позже, чем на южных отрогах Дарвазского хребта. Более длинный гидротермический режим значительно благоприятный продлевает физиологически активный период В почвах склонов северной экспозиции, что приводит к синтезу не только бурых, но и черных гуминовых кислот, связанных с кальцием. Более позднее наступление засухи в почвах северных склонов является главным почвенной формированию фактором, приведшим К на этой территории своеобразных эндемичных черно-бурых почв. Образованию черного гумуса и подержанию нейтральной реакции этих почв содействует и ежегодное субаэральное поступление на их поверхности пыли. Бассейн р. Оби-Хингоу находится в области интенсивного субаэрального поступления мелкозема пыльных бурь, возникающих на равнине в афганской пустыне. Данные о составе и свойствах черно-бурых почв приведены на рисунке и в табл. 1 и 2.

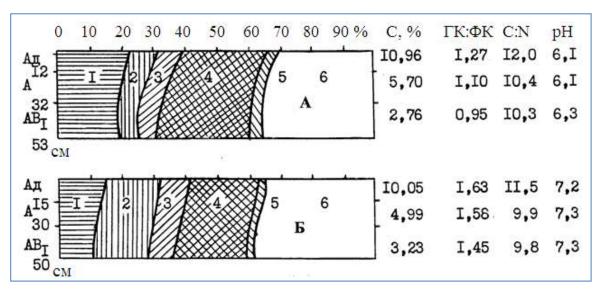


Рис. Состав гумуса темно-бурых (A) и черно-бурых (Б) почв Фракции кислот: $1 - \Gamma K-1$; $2 - \Gamma K-2$; $3 - \Gamma K-3$; 4 -сумма фракций ФК-1, ФК-2, ФК-3; 5 - 1а (декальцинат); 6 -негидролизуемый остаток. A -горная темно-бурая луговостепная умеренно-холодная; E -горная черно-бурая лугово-степная умеренно холодная

Таблица 1 Средние показатели некоторых характеристик темно-бурых (числитель) и черно-бурых (знаменатель) почв Памира

Надземная масса	Подземная масса живых и	Запасы гумуса	ΠM	<u>3Γ</u>						
растительности, т/га	мертвых корней, т/га	т/га (3Г)	HM	ПМ						
(HM)	(ПМ)									
Горные темно-бурые и черно-бурые умеренно теплые ксеролесные										
$(\Sigma t^{\circ} > 10^{\circ} = 900-2000^{\circ}, \text{ осадки за год} = 1000-1200 мм, KY=1,0-1,5)$										
$3,7\pm0,2$	135±9,7	$413 \pm 15,0$	<u>36</u>	<u>3,1</u>						
$3,8\pm0,1$	117±7,9	469± 19,6	31	4,0						
Горные темно-бурые и черно-бурые умеренно холодные лугово-степные_(∑t°>10° =										
$2000-3100^{\circ}$, осадки за год = $1200-1500$ мм, $KY = 1,5-2,0$)										
$4,4\pm0,1$	139±5,2	5,2 <u>526±18,5</u>		3,8						
41±0,1	119±4,6	563±22,6	29	4,7						

Седиментация эоловой ПЫЛИ приводит привнесу новых К веществ, обогащенных первичными минералами минеральных карбонатом кальция. Исследованные почвы Дарваза содержат илистую фракцию, состоящую в основном из три-диоктаэдрических гидрослюд и черно-бурая железистого хлорита. Горная лугово-степная отличается по минералогическому составу от остальных почв. Илистый материал этой почвы в процессе внутрипочвенного выветривания претерпел наиболее глубокое преобразование.

		Фракі	ции, %					J.		
иих	изонты средняя цность, см	<0,001 MM	<0,01 MM	Плотность, г/см ³	Hd	Ca CO ₃ , %	Гумус, %	Гидролит. кислотн., мг- экв		
	Горные темно-бурые и черно-бурые умеренно теплые ксеролесные									
Ад	<u>0-11</u>	8	29	0,60	6,8	0	10,55	2,2		
	0-11	10	31	0,60	7,2	0	12,32	0,5		
A	11-33	9	31	0,84	6,8	0	6,76	2,1		
	11-32	12	35	0,86	7,0	0	8,59	0,6		
B1	33-59	11	36	1,12	6,9	0	3,63	1,7		
	32-54	15	40	1,10	7,1	0	4,63	0,4		
B2	<u>59-82</u>	12	35	1,25	7,0	0	2,65	1,2		
	54-73	17	40	1,30	7,2	0	2,77	0,2		
BC	82-122	10	29	1,35	7,1	0	1,77	0,9		
	73-120	16	39	1,35	7,7	4,8	1,66	0		
С	<u>>122</u>	7	21	не опр.	7,5	5,6	0,97	0		
	>120	14	37	не опр.	7,9	21,6	1,00	0		
Го	рные тем	но-бурые	е и черно-	бурые уме	ренно хо.	подные л	угово-стеі	тные		
Ад	<u>0-14</u>	9	34	0,57	6,3	0	14,43	4,7		
	0-14	11	35	0,60	6,7	0	15,87	2,5		
Α	<u>14-38</u>	10	37	0,78	6,2	0	9,25	4,4		
	14-36	13	39	0,88	6,6	0	8,39	2,6		
B1	<u>38-68</u>	13	46	0,98	6,1	0	5,59	4,7		
	36-67	18	49	1,11	6,7	0	5,24	3,0		
B2	<u>68-93</u>	17	50	1,14	6,1	0	3,28	4,4		
	67-92	20	50	1,31	7,2	0	2,61	2,3		
BC	93-124	16	47	1,20	6,1	0	1,71	3,7		
	92-131	19	46	1,36	7,5	10,8	1,71	0		
С	<u>>124</u>	15	44	не опр.	6,0	0	0,96	3,6		
	>131	18	45	не опр.	7,8	12,0	0,99	0		

При прочих равных условиях и одной и той же величине КУ процесс декарбонатизации выражен лучше в темно-бурых, чем черно-бурых почвах. Реакция черно-бурых почв практически нейтральная, а темно-бурых слабокислая. Величина гидролитической кислотности у первых также значительно меньше.

Горные темно-бурые и черно-бурые почвы относятся к самым высоко гумусированным автоморфным почвам Мира. Черно-бурые почвы имеют гуматный тип гумуса, насыщенный основаниями, величина отношения $C_{r\kappa}$: $C_{d\kappa} = 1,5-2,0$. Обогащенность гумуса азотом средняя, C:N = 9-11. В составе гуминовых кислот доля фракции I ГК и 2 ГК примерно одинаковая. Величина негидролизуемого остатка средняя около 40 % OT $C_{\text{обш}}$. В черно-бурых составляет гумусообразование в аридных условиях Средней Азии находит свое максимальное выражение как в количественном, так и в качественном отношении. По типу гумуса эти почвы занимают переходное положение между буроземами и черноземами.

В генетическом отношении горные черно-бурые почвы приурочены только к глубоким внутригорным территориям, открытым для влажных воздушных относительно хорошо защищенных масс. проникновения горячего воздуха среднеазиатских пустынь. На Дарвазе экологической нишей является бассейн р. Обихингоу. такой Формирование черно-бурых почв теневых склонов гор происходит на карбонатных породах в условиях аридно-гумидного малоконтрастного гидротермического режима, характеризующегося длительным периодом биологической активности (за счет местных летних дождей) и постепенной смены влажного периода сухим сезоном. Наиболее влажными процессами образования горных черно-бурых почв являются аккумуляция гумуса, миграция гидрокарбонатного кальция в профиле и метаморфическое оглинивание.

Литература

- 1. Герасимов И.Т, Ливеровский Ю.А. Черно-бурые почвы ореховых лесов Средней Азии и их палеогеографическое значение. Почвоведение. 1947, № 9. С .521–532.
- 2. Кутеминский В. Я. Леонтьева Р. С. Почвы Таджикистана. Душанбе: Ирфон, 1966. 223 с.
- 3. Неуструев С. С. Андижанский уезд Ферганской области. Предв. отчет иссл. почв Азиатской России, 1911. С.135–172.
- 4. Чербарь В. В. Почвы западного Памира. Ch.: Pontos SRL, 2009. 262с.