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Consider the singular linear system

εẋ = A(t)x, x ∈ R
n, t ≥ 0, (1A/ε)

with bounded continuous coefficient matrix A(t) and a small positive parameter ε multiplying the
derivative and the perturbed singular system

εẏ = A(t)y +Q(t)y, y ∈ R
n, t ≥ 0, (1(A+Q)/ε)

with piecewise continuous perturbation Q(t), ‖Q(t)‖ ≤ δ, t ≥ 0.
Starting from the fundamental papers by Tikhonov, numerous papers by Butuzov, Vasil’eva,

Fedoryuk, Lomov, Rozov, Mishchenko, Vazov, Shishkin, et al. dealt with the analysis of singularly
perturbed systems of a more general form.
Necessary and sufficient conditions for all solutions y (t, y0, ε), y (0, y0, ε) = y0 ∈ R

n, of sys-
tem (1(A+Q)/ε) with continuous matrix A(t) = diag [a1(t), . . . , an(t)] and with all possible perturba-
tions Q(t) of sufficiently small norm to tend to zero as ε → +0 (for fixed t) on any finite interval
[t0, t1] of the positive half-line not containing the initial time were obtained in [1]. These conditions
are as follows:

∫ t

0
maxi {ai(τ)} dτ < 0, i = 1, . . . , n, for all t ∈ [t0, t1] ⊂ (0, t1].

In the present paper, similar conditions are obtained for an arbitrary infinite interval [t0,+∞) ⊂
(0,+∞). Note that, in this case, the condition

∫ t

0
maxi {ai(τ)} dτ < 0, t ∈ [t0,+∞), does not

guarantee that ‖y (t, y0, ε)‖ → 0 as ε → +0 for arbitrary perturbations of sufficiently small norm
on the entire interval (0,+∞). Let us illustrate this by an example.

Example. For all solutions x (t, x0, ε) of the scalar equation

εẋ = −(t+ 1)−1x, x ∈ R, ε ∈ (0, 1], t ≥ 0,

we have |x (t, x0, ε)| = |x0| exp [−ε−1 ln(t+ 1)] → 0 as ε → +0 for all t ∈ [t0,+∞) ⊂ (0,+∞) and
for an arbitrary x0 ∈ R. But if we consider the singularly perturbed equation

εẏ = −(t+ 1)−1y + δy, y ∈ R, ε ∈ (0, 1], δ > 0, t ≥ 0,

whose solutions have the form y (t, x0, ε) = y0 exp [ε−1(δt − ln(t+ 1))], then for an arbitrarily small
δ > 0, there exists a sufficiently large time T = T (δ), determined by the relation δT ≥ ln(T + 1),
such that |y (t, y0, ε)| → +∞ as ε→ +0 for all t > T .

Theorem. The solutions y (t, y0, ε) of the linear system (1(A+Q)/ε) with a continuous matrix
A(t) = diag[a1(t), . . . , an(t)] satisfy the relation limε→+0 y (t, y0, ε) = 0 (uniformly with respect to
t ∈ [t0,+∞) ⊂ (0,+∞)) for all y0 = y (0, y0, ε) ∈ R

n and for arbitrary piecewise continuous
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2 KRASOVSKII

matrices Q(t) satisfying the condition ‖Q(t)‖ ≤ δ, t ≥ 0, with a sufficiently small number δ > 0 if
and only if there exists a number δ0 > 0 such that

t∫
0

[
δ0 +max

i
{ai(τ)}

]
dτ < 0, i = 1, . . . , n, ∀t ∈ [t0,+∞) . (2)

Proof. Necessity. Consider the upper [2, p. 116] function r(t) given by the relation

r(t) ≡ max
i

{ai(t)} , i = 1, . . . , n, t ∈ [0,+∞),

and suppose the contrary: for an arbitrarily small δ > 0, there exists a point η ≡ η(δ) ∈ [t0,+∞)
such that

∫ η

0
[(δ/8)+ r(τ)]dτ ≥ 0, or, with the notation J(τ, t) ≡

∫ t

τ
r(ξ)dξ [1], (δ/8)η+J(0, η) ≥ 0.

Under this assumption, we prove the existence of an initial vector y0 ∈ R
n and a piecewise

continuous perturbation Q(·), ‖Q(·)‖ ≤ δ, such that lim
ε→+0

‖y (η, y0, ε)‖ > 0 at the above-mentioned
point η.
We take an arbitrary δ > 0. On the interval [0, η], the functions r(t) and ai(t), i = 1, . . . , n, are

continuous and hence uniformly continuous;1 i.e.,

∃T ∈ (0, η] : |t′ − t′′| ≤ T ⇒ |r (t′)− r (t′′)| ≤ δ/4,
|ai (t′)− ai (t′′)| ≤ δ/4, i = 1, . . . , n, ∀t′, t′′ ∈ [0, η]. (3)

We also require that a closed interval of length T fits an integer number s of times in the closed
interval [0, η]. For this purpose, we reduce T (if necessary) by taking, say, the quantity η/([η/T ]+1)
instead of T . Here (and only here) [·] is the integer part of a real number.
We perform the partition of the closed interval [0, η] by the points τk ≡ kT , τs ≡ η, k = 0, . . . , s.

For the numbers k = 0, . . . , s, we introduce the index l(k) ∈ {1, . . . , n} equal to the number of
a function ai(t), i ∈ {1, . . . , n}, taking the value r (τk) at the point t = τk : al(k) (τk) = r (τk).
If there are several functions with this property, then, to be definite, we choose the least of their
numbers. [One can indicate algorithms for choosing the index l(k) of several possible variants so
as to minimize the number of rotations to be used below in the construction of the perturbation
matrix Q(·).]
It follows from the well-known mean-value theorem for an integral of a continuous function

[4, p. 113] that for each k = 0, . . . , s−1, there exist points tk ∈ [τk, τk+1] with the values r (tk) ≡ fk,
k = 0, . . . , s− 1, of the function r(t) such that

J (τk, τk+1) = fkT ; (4)

moreover, by virtue of the relation al(k) (τk) = r (τk) and the uniform continuity (3), we have∣∣al(k)(t)− fk

∣∣ ≤ δ/2,
∣∣al(k+1)(t)− fk

∣∣ ≤ δ/2, t ∈ [τk, τk+1] . (5)

Indeed, ∣∣al(k)(t)− fk

∣∣ ≤ ∣∣al(k)(t)− al(k) (τk)
∣∣+ ∣∣al(k) (τk)− fk

∣∣
≤
∣∣al(k)(t)− al(k) (τk)

∣∣+ |r (τk)− r (tk)| ≤ δ/4 + δ/4 = δ/2,∣∣al(k+1)(t)− fk

∣∣ ≤ ∣∣al(k+1)(t)− al(k+1) (τk+1)
∣∣+ ∣∣al(k+1) (τk+1)− fk

∣∣
≤
∣∣al(k+1)(t)− al(k+1) (τk+1)

∣∣+ |r (τk+1)− r (tk)| ≤ δ/4 + δ/4 = δ/2.

Let us construct the perturbation matrix Q(·).
1 By the definition of uniform continuity in [3], for each of the functions ai(t), i = 1, . . . , n [and for the function r(t)],
there exists its own value Ti (respectively, Tr). But, by setting T = min {Ti, Tr}, i = 1, . . . , n, we find that
inequalities (3) are valid simultaneously for all considered functions.
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A CRITERION FOR THE ASYMPTOTIC STABILITY OF SINGULAR . . . 3

1. On the intervals [τk, τk+1) on which the indices l(k) and l(k+ 1), k ∈ {0, 1, . . . , s− 1}, do not
coincide, the perturbation matrix Q(t) = [qij(t)]

n

1 has the entries

ql(k+j)l(k+j)(t) = fk − al(k+j)(t) + (δ/8), j = 0, 1, ql(k+1)l(k)(t) = −ql(k)l(k+1)(t) = δ/8,

and all the remaining entries vanish. The norm of this matrix admits the representation

‖Q(t)‖ = max
(x2

1+···+x2
n)1/2=1

[(
ql(k)l(k)(t)xl(k) − (δ/8)xl(k+1)

)2
+
(
ql(k+1)l(k+1)(t)xl(k+1) + (δ/8)xl(k)

)2]1/2

.

Let us now estimate this norm from above with the use of the inequalities∣∣ql(k+j)l(k+j)(t)
∣∣ ≤ ∣∣fk − al(k+j)(t)

∣∣+ δ/8 ≤ δ/2 + δ/8 = 5δ/8, j = 0, 1,

which follow from (5), and the inequalities x2
l(k) + x2

l(k+1) ≤ 1 and
∣∣xl(k)xl(k+1)

∣∣ ≤ 1/2 :

‖Q(t)‖ ≤ max
(x2

1+···+x2
n)1/2=1

(
q2

l(k)l(k)(t)x
2
l(k) +

∣∣∣∣δ4ql(k)l(k)(t)
∣∣∣∣∣∣xl(k)xl(k+1)

∣∣+ δ2

64
x2

l(k+1)

+ q2
l(k+1)l(k+1)(t)x

2
l(k+1) +

∣∣∣∣δ4ql(k+1)l(k+1)(t)
∣∣∣∣∣∣xl(k)xl(k+1)

∣∣+ δ2

64
x2

l(k)

)1/2

≤ max
(x2

1+···+x2
n)1/2=1

(
2
[
25δ2

64
(
x2

l(k) + x2
l(k+1)

)
+
5δ2

32

∣∣xl(k)xl(k+1)

∣∣])1/2

≤
(
2
[
25δ2

64
+
5δ2

64

])1/2

< δ.

2. On the remaining intervals [τk, τk+1), k ∈ {0, 1, . . . , s − 1}, with l(k) = l(k + 1), we set
ql(k)l(k) = r(t)− al(k)(t) + δ/8 in the matrix Q(t), and the remaining entries are set to zero. In this
case, by (3), we obtain the norm estimate

‖Q(t)‖ =
∣∣∣∣r(t)− al(k)(t) +

δ

8

∣∣∣∣ ≤ ∣∣r(t)− al(k) (τk)
∣∣+ ∣∣al(k) (τk)− al(k)(t)

∣∣+ δ

8

= |r(t)− r (τk)|+
∣∣al(k) (τk)− al(k)(t)

∣∣+ δ

8
≤ δ

4
+
δ

4
+
δ

8
=
5
8
δ, t ∈ [τk, τk+1) .

Therefore, the norm of the perturbation matrix can be estimated as ‖Q(t)‖ < δ, t ∈ [0, η).
We take the initial vector y0 = (0, . . . , 0, 1, 0, . . . , 0) whose unique nonzero coordinate is at the

l(0)th position and consider the sequence of systems (1(A+Q)/ε) with values

ε = εm ≡ δTπ−1/(16m+ 4), m ∈ Z+,

of the small parameter. On the interval [0, η], we construct a solution y (t, y0, εm) of system
(1(A+Q)/εm

) with the parameter εm and the above-mentioned matrix Q(·) and show that it has
only one nonzero coordinate at the times t = τk, k = 0, . . . , s.
On the intervals [τk, τk+1), k ∈ {0, 1, . . . , s− 1}, with l(k) �= l(k+1), we perform the rotation of

solutions of system (1(A+Q)/εm
) with the perturbation matrix Q(·) of type 1. The Cauchy matrix

Y (t, τk) = [xij (t, τk)]
n

1 , t ∈ [τk, τk+1], of this system has the entries

xl(k)l(k) (t, τk) = xl(k+1)l(k+1) (t, τk) = Fk,m(t) cos
(

δ

8εm

(t− τk)
)
,

xl(k+1)l(k) (t, τk) = −xl(k)l(k+1) (t, τk) = Fk,m(t) sin
(

δ

8εm

(t− τk)
)
,

xii (t, τk) = exp


ε−1

m

t∫
τk

ai(τ)dτ


 , i ∈ {1, . . . , n}\{l(k), l(k + 1)},
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4 KRASOVSKII

and all remaining entries are zero. (Here and throughout the following, we use the notation
Fk,m(t) = exp[ε−1

m (fk + δ/8)(t− τk)].)
Therefore, we obtain the representation

Y (t, τk) =




C1 (t, τk) Op1(k),1 Op1(k),p2(k) Op1(k),1 Op1(k),p3(k)

O1,p1(k) Fk,m(t) cos
δ(t−τk)

8εm
O1,p2(k) −Fk,m(t) sin

δ(t−τk)

8εm
O1,p3(k)

Op2(k),p1(k) Op2(k),1 C2 (t, τk) Op2(k),1 Op2(k),p3(k)

O1,p1(k) Fk,m(t) sin
δ(t−τk)

8εm
O1,p2(k) Fk,m(t) cos

δ(t−τk)

8εm
O1,p3(k)

Op3(k),p1(k) Op3(k),1 Op3(k),p2(k) Op3(k),1 C3 (t, τk)




[to be definite, in this representation, we assume that l(k) < l(k + 1)] with the diagonal blocks

C1 (t, τk) ≡ diag


exp


 1
εm

t∫
τk

a1(τ)dτ


 , . . . , exp


 1
εm

t∫
τk

al(k)−1(τ)dτ




 ,

C2 (t, τk) ≡ diag


exp


 1
εm

t∫
τk

al(k)+1(τ)dτ


 , . . . , exp


 1
εm

t∫
τk

al(k+1)−1(τ)dτ




 ,

C3 (t, τk) ≡ diag


exp


 1
εm

t∫
τk

al(k+1)+1(τ)dτ


 , . . . , exp


 1
εm

t∫
τk

an(τ)dτ






and with the zero blocks Oi,j, i, j ∈ {0, 1, . . . , n − 2}, containing i rows and j columns, where
p1(k) ≡ l(k)− 1, p2(k) ≡ l(k + 1)− l(k)− 1, and p3(k) ≡ n− l(k + 1).
By (4), at the endpoints t = τk+1 of the considered intervals, we obtain the entries

xl(k)l(k) (τk+1, τk) = xl(k+1)l(k+1) (τk+1, τk) = exp
[
8J (τk, τk+1) + δT

8εm

]
cos
(
δT

8εm

)
,

xl(k+1)l(k) (τk+1, τk) = −xl(k)l(k+1) (τk+1, τk) = exp
[
8J (τk, τk+1) + δT

8εm

]
sin
(
δT

8εm

)
.

For the above-mentioned values εm = δTπ−1/(16m + 4), m ∈ Z+, we find that the only nonzero
entries in the Cauchy matrix Y (τk+1, τk) are

xl(k+1)l(k) (τk+1, τk) = −xl(k)l(k+1) (τk+1, τk) = exp
[
8J (τk, τk+1) + δT

8εm

]
,

xii (τk+1, τk) = exp


 1
εm

τk+1∫
τk

ai(τ)dτ


 , i ∈ {1, . . . , n}\{l(k), l(k + 1)}.

Therefore, on the intervals [τk, τk+1] on which l(k) �= l(k + 1), we rotate the solutions of the
system (1(A+Q)/εm

) by the angle (π/2) + 2πm from the axis Oyl(k) towards the axis Oyl(k+1) in
the n-dimensional space with the simultaneous change of the norm of the solution being constructed.
Since the value y (τk, y0, εm) has only the l(k)th nonzero coordinate, it follows that, after the
rotation, the value y (τk+1, y0, εm) has only the l(k+1)th nonzero coordinate, and the norm of such
a solution admits the representation

‖y (τk+1, y0, εm)‖ = exp
[
8J (τk, τk+1) + δT

8εm

]
‖y (τk, y0, εm)‖ .

On the other hand, the norm of the Cauchy matrix ‖Y (τk+1, τk)‖ is equal to

exp
[
ε−1 (J (τk, τk+1) + δT/8)

]
,
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A CRITERION FOR THE ASYMPTOTIC STABILITY OF SINGULAR . . . 5

which follows from the upper bounds

‖Y (τk+1, τk)‖ = max
(x2

1+···+x2
n)1/2=1

[
n∑

i=1
i�=l(k),l(k+1)

(
exp

[
2
εm

τk+1∫
τk

ai(τ)dτ

]
x2

i

)

+ exp
[
8J (τk, τk+1) + δT

4εm

] (
x2

l(k) + x2
l(k+1)

)]1/2

≤ max
(x2

1+···+x2
n)1/2=1

[
exp

[
8J (τk, τk+1) + δT

4εm

] (
x2

1 + · · · + x2
n

)]1/2

= exp
[
8J (τk, τk+1) + δT

8εm

]
and the lower bounds

‖Y (τk+1, τk)‖ ≥
∣∣xl(k+1)l(k) (τk+1, τk)

∣∣ = exp [8J (τk, τk+1) + δT

8εm

]
for this norm. Therefore, we obtain the relation

‖y (τk+1, y0, εm)‖ = ‖Y (τk+1, τk)‖‖y (τk, y0, εm)‖ .
This is the maximum [5] solution on the interval [τk, τk+1]; moreover, the vector y (τk+1, y0, εm) has
the unique nonzero l(k+1)th coordinate, whose growth on the next interval is maximal; therefore,
this coordinate remains maximal on the next interval as well.
On the remaining intervals [τk, τk+1), k ∈ {0, 1, . . . , s − 1}, at whose endpoints the indices l(k)

and l(k+1) coincide, we use a perturbation matrix Q(·) of type 2. In this case, system (1(A+Q)/εm
)

acquires the form

εmẏ = diag
[
a1(t), . . . , al(k)−1(t), r(t) + δ/8, al(k)+1(t), . . . , an(t)

]
y,

and its Cauchy matrix is

Y (t, τk) = exp


 1
εm

diag


 t∫

τk

a1(τ)dτ, . . . ,

t∫
τk

al(k)−1(τ)dτ, J (τk, t) +
δ

8
(t− τk) ,

t∫
τk

al(k)+1(τ)dτ, . . . ,

t∫
0

an(τ)dτ






with the norm
‖Y (t, τk)‖ = exp

[
ε−1 (J (τk, t) + δ (t− τk)/8)

]
.

Since, as was shown above, the vector y(τk, y0, εm) has the only nonzero l(k)th coordinate [or, which
is the same, the l(k+1)th coordinate], it follows that at the time t = τk+1, the norm of the solution
y (t, y0, εm) admits the representation

‖y (τk+1, y0, εm)‖ = exp
[
ε−1 (J (τk, τk+1) + δT/8)

]
‖y (τk, y0, εm)‖

= ‖Y (τk+1, τk)‖‖y (τk, y0, εm)‖ .

Therefore, the norm of the solution y (t, y0, εm) of system (1(A+Q)/ε) (which is a maximum
solution on each of the intervals [τk, τk+1], k = 0, . . . , s− 1) satisfies the relations

‖y (η, y0, εm)‖ = ‖y0‖
s−1∏
k=0

‖Y (τk+1, τk)‖ = ‖y0‖ exp
[

s−1∑
k=0

8J (τk, τk+1) + δT

8εm

]

= ‖y0‖ exp
[
8J(0, η) + δη

8εm

]
.

DIFFERENTIAL EQUATIONS Vol. 42 No. 8 2006



6 KRASOVSKII

By the assumption stipulated at the beginning of the proof, we have (δ/8)η + J(0, η) ≥ 0.
Therefore, in the limit as εm → 0, we obtain

lim
m→∞

‖y (η, y0, εm)‖ ≥ ‖y0‖ > 0,

and this contradicts the relation limε→+0 y (t, y0, ε) = 0 for all t ∈ [t0,+∞) from the assumptions of
the theorem. The obtained contradiction implies the necessity of the assumptions of the theorem.

Sufficiency. We use the estimate

‖y (t, y0, ε)‖ ≤ ‖y0‖ exp
{
ε−1[δt + J(0, t)]

}
of the norm ‖y (t, y0, ε)‖ of solutions of system (1(A+Q)/ε), which was obtained in [1] from the
Cauchy integral formula [6, p. 166] with the use of the Gronwall–Bellman lemma [6, p. 231] and is
valid for any t ≥ 0; we rewrite this estimate in the form

‖y (t, y0, ε)‖ ≤ ‖y0‖ exp


1ε

t∫
0

[δ + r(τ)]dτ


 . (6)

By the assumption of the theorem, there exists a δ0 > 0 such that
∫ t

0
[δ0 + r(τ)] dτ < 0 for all

t ∈ [t0,+∞). This, together with the estimate (6), implies that ‖y (t, y0, t)‖ → 0 as ε → +0 at an
arbitrary point t ∈ [t0,+∞) ⊂ (0,+∞) for arbitrary given values y0 ∈ R

n and for any perturbation
Q(t) such that ‖Q(t)‖ ≤ δ ≤ δ0/2, t ≥ 0.
Let us show that this convergence is uniform with respect to t ∈ [t0,+∞); i.e., for any β > 0,

there exists an ε(β) > 0 such that ‖y (t, y0, ε)‖ ≤ β for all ε ≤ ε(β) and t ∈ [t0,+∞).
The inequality δ ≤ δ0/2, together with (2) and (6), implies the estimates

‖yn (t, y0, ε)‖ ≤ ‖y0‖ exp


1ε

t∫
0

[
δ0
2
+ r(τ)

]
dτ




= ‖y0‖ exp


1ε


−δ0

2
t+

t∫
0

[δ0 + r(τ)] dτ






≤ ‖y0‖ exp
[
− δ0
2ε
t

]
≤ ‖y0‖ exp

[
− δ0
2ε
t0

]
(7)

for all t ∈ [t0,+∞).
We take an arbitrary number β ∈ (0, ‖y0‖) and indicate the corresponding value ε(β) indepen-

dent of t and defined as follows: ε(β) = δ0t0/[2 ln (‖y0‖/β)]. Then the estimate (7) implies the
inequality |y (t, y0, ε)| < β valid simultaneously for all ε ≤ ε(β) and all t ∈ [t0,+∞). Therefore,
the solution y (t, y0, ε) tends to the zero solution uniformly with respect to t on the entire infinite
interval [t0,+∞) as ε→ +0. The proof of the theorem is complete.

Remark. From the estimate (7), we obtain the inequality

‖y (t, y0, ε)‖ ≤ R exp
[
−(2ε)−1δ0t0

]
, t ∈ [t0,+∞) ,

for all vectors y0, ‖y0‖ ≤ R, in the n-dimensional ball DR with arbitrary given radius R and with
center the origin, which implies that for each β ∈ (0, R), there exists an

ε(β) = δ0t0 × 2−1 ln−1(R/β)

such that for all ε ∈ (0, ε(β)], the inequality

‖y (t, y0, ε)‖ ≤ β
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is valid simultaneously for all t ∈ [t0,+∞) and y0 ∈ DR. Therefore, the convergence

‖y (t, y0, ε)‖ → 0, ε→ +0,

claimed in the theorem is uniform with respect to t ∈ [t0,+∞) as well as with respect to vectors
y0 in the ball DR.
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