= ORDINARY DIFFERENTIAL EQUATIONS =

On the Existence of Linear Pfaff Systems with Lower Characteristic Sets of Positive Lebesgue m-Measure

N. A. Izobov, S. G. Krasovskii, and A. S. Platonov

Institute of Mathematics, National Academy of Sciences, Minsk, Belarus Mogilev State University, Mogilev, Belarus Received January 8, 2009

Abstract—We prove the existence of an *n*-dimensional completely integrable Pfaff system with multidimensional time of dimension $m \geq 2$, with bounded infinitely differentiable coefficients, and with the set of lower characteristic vectors of its solutions having positive Lebesgue mmeasure.

DOI: 10.1134/S0012266109050036

We consider n-dimensional linear Pfaff systems

$$\frac{\partial x}{\partial t_i} = A_i(t)x, \quad x \in \mathbb{R}^n, \quad n \ge 2, \quad i = 1, \dots, m, \quad t = (t_1, \dots, t_m) \in \mathbb{R}^m_+, \quad m \ge 2, \quad (1_{mn})$$

with continuously differentiable coefficient matrices satisfying the complete integrability condition [1, pp. 14–24; 2, pp. 16–26]

$$\frac{\partial A_i(t)}{\partial t_j} + A_i(t)A_j(t) = A_j(t)A_i(t) + \frac{\partial A_j(t)}{\partial t_i}, \qquad i, j = 1, \dots, m, \qquad t \in \mathbb{R}_+^m, \tag{2}$$

 $in \mathbb{R}_+^m = \{ t \in \mathbb{R}^m : t \ge 0 \}.$

Let $\lambda[x] \in \mathbb{R}^m$ and $p[x] \in \mathbb{R}^m$ be some characteristic [3] and lower characteristic [3] vectors of a nontrivial solution $x: \mathbb{R}^m_+ \to \mathbb{R}^n \setminus \{0\}$ of system (1_{mn}) ; these vectors are m-dimensional analogs of the corresponding characteristic Lyapunov exponent and lower Perron exponent. In addition, the first of them—the characteristic vector $\lambda[x]$ —is determined by the relations

$$L_x(\lambda[x]) \equiv \overline{\lim}_{t \to \infty} \frac{\ln \|x(t)\| - (\lambda[x], t)}{\|t\|} = 0, \qquad L_x(\lambda[x] - \varepsilon e_i) > 0 \qquad \forall \varepsilon > 0,$$

$$e_i = (\underbrace{0, \dots, 0, 1}_{i}, 0, \dots, 0) \in \mathbb{R}_+^m, \qquad i = 1, \dots, m,$$

and the second—the lower characteristic vector p[x]—is determined by the conditions

$$l_x(p[x]) \equiv \lim_{t \to \infty} \frac{\ln ||x(t)|| - (p[x], t)}{||t||} = 0,$$

$$l_x(p[x] + \varepsilon e_i) < 0 \quad \forall \varepsilon > 0, \quad i = 1, \dots, m.$$

$$(3_1)$$

$$l_x(p[x] + \varepsilon e_i) < 0 \qquad \forall \varepsilon > 0, \qquad i = 1, \dots, m.$$
 (3₂)

The sets $\Lambda_x = \bigcup \lambda[x]$ and $P_x = \bigcup p[x]$ are referred to as the characteristic set [3] and the lower characteristic set [4], respectively, of the nontrivial solution x(t) of system (1_{mn}) ; they are bounded closed convex [2] and concave [4] curves, respectively, in the case of two-dimensional time $t \in \mathbb{R}^2$.

It is known that the set of characteristic exponents (e.g., see [5, p. 15]) of an n-dimensional ordinary differential system consists of at most n distinct numbers; i.e., such a system has at most n nontrivial solutions with pairwise distinct Lyapunov exponents. There is no counterpart of the previous result for the analog of the Lyapunov characteristic exponent of a nontrivial solution of an ordinary differential system, that is, for the characteristic set Λ_x of a nontrivial solution $x: \mathbb{R}^m_+ \to \mathbb{R}^n$ of a linear completely integrable Pfaff system (1_{mn}) . Namely, it was proved in [6] that there exists an n-dimensional system (1_{2n}) with two-dimensional time $t \in \mathbb{R}^2_+$ that has a countable set $\{x_1(t), \ldots, x_k(t), \ldots\}$ of nontrivial solutions $x_k: \mathbb{R}^2_+ \to \mathbb{R}^n \setminus \{0\}$ with pairwise distinct characteristic sets Λ_{x_k} ($\neq \Lambda_{x_j}$ for arbitrary $k \neq j$). In addition, it was proved in [7] that each completely integrable Pfaff system (1_{22}) has at most countably many solutions with pairwise distinct characteristic sets. Therefore, the entire characteristic set $\Lambda(A_1, A_2) = \bigcup_{x \neq 0} \Lambda_x$ of system (1_{22}) has zero plane Lebesgue measure.

The situation is different for the Perron lower exponent and its analog, the lower characteristic set. In the case of ordinary differential systems (1_{1n}) , there exist systems whose set of Perron lower exponents has positive Lebesgue measure [8]. The existence of n-dimensional completely integrable Pfaff linear systems (1_{2n}) with two-dimensional time and (1_{3n}) with three-dimensional time and lower characteristic sets $\Pi(A_1, A_2)$ of positive plane measure and $\Pi(A_1, A_2, A_3)$ of positive measure in the space \mathbb{R}^3 was proved in [4] and [9], respectively. We encounter the problem on the existence of systems (1_{mn}) with a similar property and with time $t \in \mathbb{R}_+^n$ of arbitrary dimension m.

The present paper deals with the construction of an n-dimensional linear completely integrable system (1_{mn}) with m-dimensional time $t \in \mathbb{R}^m_+$, $m \geq 2$, with bounded infinitely differentiable coefficients in \mathbb{R}^m_+ , and with lower characteristic set

$$\Pi(A_1,\ldots,A_m) = \bigcup_{x \neq 0} P_x$$

of positive Lebesgue measure in the space \mathbb{R}^m . To this end, we first construct the lower characteristic set of the sum of special scalar exponentials.

Lemma. The lower characteristic set P_E of the function

$$E(t) = \sum_{i=1}^{m} e^{-a_i t_i}, \quad a_i = \text{const}, \quad m \ge 2, \quad t_i \ge 0,$$

coincides with the set

$$\Pi_E \equiv \left\{ p \in \mathbb{R}^m_- : \ S(p) \equiv \sum_{i=1}^m \frac{p_i}{a_i} = -1 \right\}.$$

Proof. First, let us prove the inequality $p \leq 0$ for any lower characteristic vector $p \in P_E$. Suppose the contrary: $p_k > 0$ for some $k \in \{1, ..., m\}$. Then we have the inequalities

$$l_E(p) \le \lim_{\|t\| = t_k \to +\infty} \frac{\ln(m-1+e^{-a_k t_k}) - p_k t_k}{t_k} = -p_k < 0$$

contradicting the first condition $l_E(p) = 0$ in the definition of a lower characteristic vector p.

Now let us prove the inclusion

$$\Pi_E \subset P_E$$
 (4)

for the part of the plane $\sum_{i=1}^{m} p_i/a_i = -1$ in the *m*-dimensional quadrant $\mathbb{R}^m_- = \{p \in \mathbb{R}^m : p \leq 0\}$ of the space \mathbb{R}^m . Let

$$p \in \Pi_E$$
, $t \in \mathbb{R}_+^m \setminus \{0\}$, and $a_k t_k = \min_{i=1, m} \{a_i t_i\}$

for some $k \in \{1, ..., m\}$. Then, by virtue of the already proved inequalities $-p_i \ge 0$, we have the estimates

$$\ln E(t) - (p, t) \ge -a_k t_k - p_k t_k - \sum_{i \ne k}^m p_i \frac{a_k}{a_i} t_k = a_k t_k \left(-1 - \sum_{i=1}^m \frac{p_i}{a_i} \right) = 0,$$

which imply that $l_E(p) \geq 0$. At the same time, on the ray

$$T_a = \{t \in \mathbb{R}^m_+ \setminus \{0\} : a_i t_i = a_k t_k, i = 1, \dots, m\}, \quad k \in \{1, \dots, m\},$$

we have the opposite estimate

$$[\ln E(t) - (p,t)]_{t \in T_a} \le \ln m - a_k t_k \left(-1 - \sum_{i=1}^m \frac{p_i}{a_i} \right) = \ln m,$$

which justifies the inequality $l_E(p) \leq 0$ and hence the desired relation $l_E(p) = 0$.

For a vector $p \in \Pi_E$, let us prove the second necessary condition

$$l_E(p+\varepsilon e_k)<0, \qquad e_k=(\underbrace{0,\ldots,0,1}_{l_k},0,\ldots,0) \qquad \forall \varepsilon>0.$$

Indeed, on the ray T_a , we have the estimate

$$[\ln E(t) - (p + \varepsilon e_k, t)]_{t \in T_a} \le \ln m - \varepsilon t_k,$$

which implies the desired inequality

$$l_E(p+\varepsilon e_k) \le -\frac{\varepsilon}{a_k r}, \qquad r \equiv \left(\sum_{i=1}^m \frac{1}{a_i^2}\right)^{1/2}, \qquad k=1,\ldots,m.$$

The proof of the inclusion (4) is complete.

Now let us prove the coincidence of the sets Π_E and P_E . To this end, we suppose the contrary: there exists a vector $p \in P_E$ such that $p \notin \Pi_E$. By virtue of the above-proved inequality $q \leq 0$, we have $p \leq 0$ for any lower characteristic vector $q \in P_E$; therefore, we have the following cases for the quantity

$$S(p) \equiv \sum_{i=1}^{m} \frac{p_i}{a_i}.$$

- 1. $S(p) \in (-1, 0]$.
- 2. S(p) < -1.

In case 1, on the ray T_a , we have the relations

$$\begin{aligned} [\ln E(t) - (p, t)]|_{t \in T_a} &= \ln m - a_k t_k (1 + S(p)), & 1 + S(p) > 0, & t_k \ge 0, \\ & ||t||_{t \in T_a} &= a_k t_k r, & k \in \{1, \dots, m\}, & 1 + S(p) > 0, & t_k \ge 0, \end{aligned}$$

which imply that $l_E(p) \le -(1 + S(p))r^{-1} < 0$. This inequality shows that the case $S(p) \in (-1, 0]$ is impossible.

Consider case 2. Obviously, there exists a vector $q \in \Pi_E$ for which the conditions $p \leq q \leq 0$ and $p \neq q$ are satisfied and the inequality $p_l < q_l$ holds for some $l \in \{1, \ldots, m\}$. Then an arbitrary vector $t \in \mathbb{R}^m_+ \setminus \{0\}$ such that

$$a_k t_k = \min_{i=1,\dots,m} \{a_i t_i\}, \qquad k \in \{1,\dots,m\},$$

satisfies the inequalities

$$\ln E(t) - (p,t) - \varepsilon t_l = \ln E(t) - (q,t) + (q-p,t) - \varepsilon t_l \ge -a_k t_k \left(1 + \sum_{i=1}^m \frac{q_i}{a_i} \right) + (q_l - p_l - \varepsilon) t_l$$

$$= (q_l - p_l - \varepsilon) t_l \ge 0, \qquad t \in \mathbb{R}_+^m,$$

for $\varepsilon \in (0, q_l - p_l)$. They imply the inequality $l_E(p + \varepsilon_l) \ge 0$ for all sufficiently small $\varepsilon > 0$, whence we find that the vector p is not a lower characteristic vector of the function $E : \mathbb{R}_+^m \to \mathbb{R}_+ \setminus \{0\}$;

therefore, the second case S(p) < -1 is impossible. We have thereby shown that each vector $p \in P_E$ belongs to the set Π_E . This, together with the above-proved inclusion (4), implies that $P_E = \Pi_E$. The proof of the lemma is complete.

The following assertion establishes the existence of the desired system.

Theorem. For arbitrary positive integers $m \geq 2$ and $n \geq 2$, for real numbers $\alpha_1 \leq \alpha_2 \leq 0$, and for a real vector $a \in \mathbb{R}^m$ with positive components, there exists a completely integrable Pfaff system (1_{mn}) with bounded infinitely differentiable coefficients in \mathbb{R}^m_+ and with lower characteristic set

$$\Pi(A_1, \dots, A_m) = \left\{ p \in \mathbb{R}^m_- : \ \alpha_1 \le \sum_{i=1}^m \frac{p_i}{a_i} \le \alpha_2 \right\}$$

of positive Lebesgue measure in the space \mathbb{R}^m .

Proof. 1. The construction of the desired two-dimensional system (1_{m2}) and its general solution. Following [4], for the case in which $\alpha_1 < \alpha_2$ we first construct a perfect set P_0 on $\Delta = [0, 1]$ similar to the Cantor perfect set [10, p. 50] by using the quantities

$$\varepsilon_n = \exp[(\alpha_1 - \alpha_2) \exp 2^{n+1}], \quad n \in \mathbb{N}.$$

We divide the original closed interval $\Delta_0^{(1)} = \Delta$ of zero rank and of length 1 into two closed intervals $\Delta_1^{(1)} = [0, \varepsilon_1]$ and $\Delta_1^{(2)} = [1 - \varepsilon_1, 1]$ of length ε_1 of the first rank and one interval $\delta_1^{(1)} = (\varepsilon_1, 1 - \varepsilon_1)$ of the same rank. In a similar way, we split any closed interval $\Delta_n^{(m)}$, $m \in \{1, \ldots, 2^n\}$, of length ε_n and rank n into two closed intervals $\Delta_{n+1}^{(2m-1)}$ and $\Delta_{n+1}^{(2m)}$ of length ε_{n+1} and rank (n+1) whose left and right endpoints, respectively, coincide with those of $\Delta_n^{(m)}$, and one interval

$$\delta_{n+1}^{(m)} = \Delta_n^{(m)} \setminus (\Delta_{n+1}^{(2m+1)} \cup \Delta_{n+1}^{(2m)})$$

of rank (n+1). We continue this process infinitely; then Δ contains exactly 2^n intervals $\Delta_n^{(m)}$, $m=1,\ldots,2^n$, and 2^{n-1} intervals $\delta_n^{(m)}$, $m=1,\ldots,2^{n-1}$, for each $n\in\mathbb{N}$.

By $\alpha_n^{(m)}$, $m=1,\ldots,2^n$, we denote the midpoint of $\Delta_n^{(m)}$ and introduce the set

$$P_0 = \bigcap_{n=1}^{+\infty} \bigcup_{n=1}^{2^n} \Delta_n^{(m)},$$

which, by [10, p. 50], has nonzero Lebesgue measure.

On the closed interval Δ , we define the Cantor step function $\Theta_0: \Delta \to [0,1]$ with intervals $\delta_n^{(m)}$ of constant values. According to [10, p. 200], this function is a continuous nondecreasing function on [0,1] and has the range $[0,1] = \{\Theta_0(\alpha): \alpha \in P_0\}$. Following [4], we introduce the new continuous nondecreasing function

$$\Theta(\alpha) = |\alpha_2| + (|\alpha_1| - |\alpha_2|)\Theta_0(\alpha) : [0, 1] \to [|\alpha_2|, |\alpha_1|].$$

Throughout the following, to preserve the conventional above-introduced notation of the dimension $m \geq 2$ of the time space \mathbb{R}^m_+ and the superscript $m \in \{1, \dots, 2^n\}$ on the intervals $\Delta_n^{(m)}$ (and their midpoints $\alpha_n^{(m)}$) and the intervals $\delta_n^{(m)}$ of rank n used in the construction of the Cantor perfect set $P_0 \subset [0,1]$ and to avoid related confusion, in the proof of this theorem, we denote the dimension m of the spaces \mathbb{R}^m and \mathbb{R}^m_+ by $m_0 \geq 2$; i.e., we consider the spaces \mathbb{R}^{m_0} and $\mathbb{R}^{m_0}_+$ and the m_0 -dimensional time $t = (t, \dots, t_{m_0}) \in \mathbb{R}^{m_0}_+$.

We split the domain $\mathbb{R}^{m_0}_+$ of the m_0 -dimensional time t by the planes

$$\tau(t) \equiv a_1 t_1 + \dots + a_{m_0} t_{m_0} = e^n, \qquad n \in \mathbb{N},$$

into the domains

$$\{t \in \mathbb{R}^{m_0}_+: e^n \le \tau(t) < e^{n+1}\}, \qquad n \in \mathbb{N}.$$

These domains are successively denoted by $\Pi_n^{(m)}$ so as to ensure that, for any fixed $n \in \mathbb{N}$, the index m takes all values $1, \ldots, 2^n$ and the right boundary of the domain $\Pi_n^{(m)}$ coincides with the left boundary of the domain $\Pi_n^{(m+1)}$; in addition, the right boundary of the domain $\Pi_n^{(2^n)}$ coincides with the left boundary of the domain $\Pi_{n+1}^{(1)}$. In turn, we split any domain $\Pi_n^{(m)}$ with left closed boundary $\tau(t) = \tau_{mn}$ into the subdomains

$$\tilde{\Pi}_{n}^{(m)} = \{ t \in \Pi_{n}^{(m)} : \ \tau_{mn} \le \tau(t) < \tau_{mn} \sqrt{e} \equiv \tau'_{mn} \}, \qquad \tilde{\tilde{\Pi}}_{n}^{(m)} = \Pi_{n}^{(m)} \backslash \tilde{\Pi}_{n}^{(m)}.$$

In addition, we split the last subdomain $\tilde{\tilde{\Pi}}_n^{(m)}$ into the subdomains

$$\bar{\Pi}_{n}^{(m)} = \{ t \in \tilde{\Pi}_{n}^{(m)} : \ \tau'_{mn} \le \tau(t) < \tau_{mn} e^{3/4} \equiv \tau''_{mn} \}, \qquad \bar{\bar{\Pi}}_{n}^{(m)} = \tilde{\bar{\Pi}}_{n}^{(m)} \setminus \bar{\Pi}_{n}^{(m)}.$$

By straightforward computations, we represent the left boundary τ_{mn} of the domain $\tilde{\Pi}_n^{(m)}$ thus defined as

$$\tau_{mn} = \exp(2^n + m - 3), \qquad m = 1, \dots, 2^n, \qquad n \in \mathbb{N}.$$
(5)

Let us introduce the analog

$$e_{01}(\tau, \tau_1, \tau_2) = \begin{cases} \exp\{-\ln^{-2}(\tau/\tau_1) \times \exp[-\ln^{-2}(\tau/\tau_2)]\} & \text{if } \tau_1 < \tau < \tau_2 \\ i - 1 & \text{if } \tau = \tau_i, i = 1, 2, \end{cases}$$

of the infinitely differentiable Gelbaum–Olmsted function [11, p. 54 of the Russian translation] on the interval $[\tau_1, \tau_2]$. By using the function e_{01} and by following [4], we introduce two new functions $f[\tau(t)]$ and $F[\tau(t)]$, $t \in \mathbb{R}^{m_0}_+$. We introduce a bounded infinitely differentiable function $f[\tau(t)]$ that is equal to $|\alpha_2|$ for $t \in \tilde{\Pi}_n^{(m)}$ and for arbitrary $n \in \mathbb{N}$ and $m = 1, \ldots, 2^n$ and also for $\{t \in \mathbb{R}_+^{m_0}: 0 \le \tau(t) < 1\}$. In the domain $\tilde{\Pi}_n^{(m)}$, we define this function as follows:

$$f[\tau(t)] = \begin{cases} |\alpha_2| + [\Theta(\alpha_n^{(m)}) - |\alpha_2|]e_{01}(\tau(t), \tau'_{mn}, \tau''_{mn}) & \text{for } t \in \bar{\Pi}_n^{(m)} \\ \Theta(\alpha_n^{(m)}) + [|\alpha_2| - \Theta(\alpha_n^{(m)})]e_{01}(\tau(t), \tau''_{mn}, e\tau_{mn}) & \text{for } t \in \bar{\bar{\Pi}}_n^{(m)}. \end{cases}$$

Obviously, this function has the property $f: [0, +\infty) \to [|\alpha_2|, |\alpha_1|]$.

We define a bounded infinitely differentiable function $F:[0,+\infty)\to[0,1]$ by the relations

$$F[\tau(t)] = \begin{cases} \alpha_1^{(1)} & \text{if } 0 \le \tau(t) \le 1\\ \alpha_n^{(m)} & \text{if } \tau'_{mn} \le \tau(t) < e\tau_{mn},\\ F(\tau_{mn}) + [F(\tau'_{mn}) - F(\tau_{mn})]e_{01}(\tau(t), \tau_{mn}, \tau'_{mn}) & \text{if } \tau_{mn} < \tau(t) < \tau'_{mn}. \end{cases}$$

Both functions have bounded partial derivatives of any order with respect to all variables t_1, \ldots, t_{m_0} , which follows from the corresponding properties of the functions $e_{01}(\tau(t), \tau_1, \tau_2)$.

By using the functions E(t), $f[\tau(t)]$, and $F[\tau(t)]$, we define the two-dimensional vector function

$$x(t,c) = (c_1[E(t)]^{f[\tau(t)]}, \ [c_1F(\tau(t)) + c_2][E(t)]^{|\alpha_2|}) \in \mathbb{R}^2, \qquad c = (c_1, c_2) \in \mathbb{R}^2, \qquad t \in \mathbb{R}^{m_0}_+, \quad (6)$$

of an arbitrary constant vector $c \in \mathbb{R}^2$ and the m_0 -dimensional time vector $t \in \mathbb{R}^{m_0}$; this function coincides in form with the function x(t,c) in [4] but substantially differs from the latter not only in the number of independent variables t_1, \ldots, t_{m_0} but also in the definition of the basic functions

$$E(t)$$
, $f[\tau(t)]$, $F[\tau(t)]$ and $\tau(t)$.

This function is a general solution of the two-dimensional linear partial differential system

$$\frac{\partial x}{\partial t_i} = A_i(t)x, \quad x \in \mathbb{R}^2, \quad t \in \mathbb{R}^{m_0}_+, \quad i = 1, \dots, m_0, \tag{7}$$

with bounded infinitely differentiable matrices

$$A_{i}(t) = \begin{pmatrix} \frac{\partial f[\tau(t)]}{\partial t_{i}} \ln E(t) + f[\tau(t)]E^{-1}(t) \frac{\partial E(t)}{\partial t_{i}} & 0\\ \frac{\partial F[\tau(t)]}{\partial t_{i}} [E(t)]^{|\alpha_{2}| - f[\tau(t)]} & |\alpha_{2}|E^{-1}(t) \frac{\partial E(t)}{\partial t_{i}} \end{pmatrix}, \quad t \in \mathbb{R}_{+}^{m_{0}}, \quad i = 1, \dots, m_{0}.$$
(8)

The proof of the infinite differentiability and boundedness of these matrices in \mathbb{R}^m_+ as well as of the complete integrability of the constructed two-dimensional system (1_{m_02}) is similar to the corresponding proofs in [4].

2. Construction of a subset of positive Lebesgue m_0 -measure in the entire lower characteristic set of the two-dimensional linear system (1_{m_02}) . By the definition of the set P_0 , for any $\alpha \in P_0$ and $n \in \mathbb{N}$, there exists an $m = m_n(\alpha) \in \{1, \dots, 2^n\}$ such that

$$|\alpha_n^{(m)} - \alpha| \le \frac{\varepsilon_n}{2}, \qquad m = m_n(\alpha), \qquad n \in \mathbb{N}.$$
 (9)

We introduce the concise notation

$$\tau''_{m_n(\alpha),n} \equiv \eta_n(\alpha)$$
 and $\alpha_n^{(m_n(\alpha))} \equiv \alpha_n^m(\alpha);$

by (5), $\eta_n(\alpha)$ satisfies the estimate

$$\eta_n(\alpha) \le e\tau_{m_n(\alpha),n}(\alpha) < \exp 2^{n+1}, \qquad n \in \mathbb{N}.$$
(10)

To estimate $|F(\eta_n(\alpha)) - \alpha|$ from above, we use the inequality

$$1 \ge \frac{1}{m_0} E(t) \ge \exp\left[-\frac{\tau(t)}{m_0}\right], \qquad t \in \mathbb{R}_+^{m_0}, \tag{11}$$

and the inequality $f(\tau(t)) \leq |\alpha_1|$. Inequalities (10) and (11) imply also the inequality

$$1 \ge \frac{1}{m_0} E(t) \Big|_{r(t) = \eta_n(\alpha)} > \exp\left(-\frac{1}{m_0} \exp 2^{n+1}\right) > \exp(-\exp 2^{n+1}), \qquad n \in \mathbb{N}.$$
 (12)

Therefore, by the definition of the function $F(\tau(t))$ and the estimate (12), we have the inequalities

$$2|F(\eta_{n}(\alpha)) - \alpha| = 2|\alpha_{n}^{(m)}(\alpha) - \alpha| \leq \varepsilon_{n} = e^{(\alpha_{1} - \alpha_{2})} \exp_{2^{n+1}} \leq \left[\frac{1}{m_{0}} E(t) \Big|_{\tau(t) = \eta_{n}(\alpha)} \right]^{|\alpha_{1}| - |\alpha_{2}|}$$

$$\leq \left[\frac{1}{m_{0}} E(t) \Big|_{\tau(t) = \eta_{n}(\alpha)} \right]^{f(\eta_{n}(\alpha)) - |\alpha_{2}|} \leq [E(t)|_{\tau(t) = \eta_{n}(\alpha)}]^{f(\eta_{n}(\alpha)) - |\alpha_{2}|}, \tag{13}$$

where the penultimate inequality holds by virtue of the left estimate in (11).

By virtue of inequality (13), the considered solution x(t, a) with the initial vector $a = (c_1, -\alpha c_1)$, $\alpha \in P_0$, $c_1 = \text{const} \neq 0$, satisfies the inequalities

$$||x(t,a)||_{\tau(t)=\eta_n(\alpha)} \le 2|c_1|[E(t)|_{\tau(t)=\eta_n(\alpha)}]^{f(\eta_n(\alpha))} = 2|c_1|[E(t)|_{\tau(t)=\eta_n(\alpha)}]^{\Theta(\alpha_n^{(m)})},$$

$$m = m_n(\alpha) \in \{1, \dots, 2^n\}, \quad n \in \mathbb{N}, \quad t \in \mathbb{R}_+^{m_0}.$$
(14)

It follows from inequalities (9) that

$$\alpha_n^{(m_n(\alpha))} \to \alpha \in P_0 \subset [0,1], \qquad n \to +\infty.$$

Therefore, by virtue of the continuity of the function $\Theta(\alpha): [0,1] \to [|\alpha_2|, |\alpha_1|]$, we have

$$\Theta(\alpha_n^{(m_n(\alpha))}) \to \Theta(\alpha), \qquad \alpha \in P_0, \qquad n \to +\infty.$$
 (15)

Now let us show that the set P_x of lower characteristic vectors of the considered solution x(t,a)contains the set

$$Q_{\alpha} \equiv \left\{ p \in \mathbb{R}_{-}^{m_0} : \sum_{i=1}^{m_0} \frac{p_i}{a_i} = -\Theta(\alpha) \right\}.$$

To this end, in accordance with conditions (3_1) and (3_2) , we should prove the relation $l_x(p) = 0$ and the inequalities $l_x(p+\varepsilon e_k)<0, k=1,\ldots,m_0$, for any vector $p\in Q_\alpha$. Let us obtain the latter inequalities. From (14), we have

$$\begin{split} l_x(p+\varepsilon e_k) &\leq \varliminf_{n\to\infty} \frac{\Theta(\alpha_n^{(m)}) \ln E(t) - (p,t) - \varepsilon t_k}{\|t\|} \bigg|_{\substack{t\in T_{\alpha} \\ \tau(t) = \eta_n(\alpha)}} \\ &= \varliminf_{n\to\infty} \frac{1}{r} \left\{ -\left[\Theta(\alpha_n^{(m)}) - \sum_{i=1}^{m_0} \frac{p_i}{a_i}\right] - \frac{\varepsilon}{a_k} \right\} \\ &= -\frac{\varepsilon}{ra_k} + \lim_{n\to\infty} \frac{1}{r} [\Theta(\alpha) - \Theta(\alpha_n^{(m)})]|_{m=m_n(\alpha)} \\ &= -\frac{\varepsilon}{ra_k} < 0, \quad r \equiv \left(\sum_{i=1}^{m_0} \frac{1}{a_i^2}\right)^{1/2}, \quad \forall \varepsilon > 0, \quad k = 1, \dots, m; \end{split}$$

here the last equality in the chain holds by virtue of property (15) and the continuity of the function $\Theta: [0,1] \to [|\alpha_2|, |\alpha_1|].$

To prove property (3_1) , let us first justify the inequality $l_x(p) \geq 0$, $p \in Q_\alpha$. Let the limit $l_x(p)$ be realized along a sequence $\{t(k)\}$ with the property $||t(k)|| \to +\infty$ as $k \to \infty$. Obviously, this sequence has the property $\tau(t(k)) \to +\infty$ as $k \to \infty$, and without loss of generality, we can assume that there exist limits

$$f[\tau(t(k))] \to f_0 \in [|\alpha_2|, |\alpha_1|], \qquad F[\tau(t(k))] \to F_0 \in [0, 1], \qquad k \to \infty.$$

Again without loss of generality, one can assume that there exists a fixed index $l \in \{1, \ldots, m_0\}$ such that

$$a_l t_l(k) = \min_{i=1,\dots,m_0} \{ a_i t_i(k) \} \qquad \forall k \in \mathbb{N}.$$

$$(16)$$

If this condition does not hold for all $k \in \mathbb{N}$ but holds for infinitely many $k \in \mathbb{N}$, then we can rarefy the original sequence $\{t(k)\}$ by deleting the elements for which inequality (16) fails; the successive numbering of terms of the remaining infinite sequence gives a new sequence $\{t(k)\}$ for which condition (16) holds for all $k \in \mathbb{N}$.

Finally, without loss of generality we assume that only one of the following two possible cases takes place.

- 1. $t(k) \in \tilde{\Pi}_{n(k)}^{(m(k))}$ for all $k \in \mathbb{N}$. 2. $t(k) \in \tilde{\tilde{\Pi}}_{n(k)}^{(m(k))}$ for all $k \in \mathbb{N}$.

Consider the first case. By using the estimate

$$||x(t(k),c)|| \ge |c_1|[E(t(k))]^{|\alpha_2|}, \qquad t(k) \in \tilde{\Pi}_{n(k)}^{(m(k))}, \qquad k \in \mathbb{N},$$
 (17)

for the norm of the solution x(t,c) and similar considerations from the proof of the lemma and by taking into account the inequalities $-p_i \geq 0$ and $\Theta(\alpha) \geq |\alpha_2|$, we obtain the estimates

$$l_{x}(p) \geq \underline{\lim}_{k \to \infty} \frac{|\alpha_{2}| \ln E(t(k)) - (p, t(k))}{\|t(k)\|} \geq \underline{\lim}_{k \to \infty} \frac{a_{l}t_{l}(k)[-|\alpha_{2}| - S(p)]}{\|t(k)\|}$$
$$\geq \underline{\lim}_{k \to \infty} \frac{a_{l}t_{l}(k)[\Theta(\alpha) - |\alpha_{2}|]}{\|t(k)\|} \geq 0, \qquad p \in Q_{\alpha}. \tag{18}$$

Now consider the second case. In this case, by the construction of the function $F[\tau(t)]$, for $F_0 = \alpha$, we have the relations

$$F[\tau(t(k))] = \alpha_{n(k)}^{(m(k))} \to \alpha, \qquad k \to \infty.$$
(19)

The construction of the function $f[\tau(t)]$ implies the inequalities

$$|\alpha_2| \le f[\tau(t(k))] \le \Theta(\alpha_{n(k)}^{(m(k))}), \qquad t(k) \in \tilde{\tilde{\Pi}}_{n(k)}^{(m(k))}, \qquad k \in \mathbb{N}.$$
(20)

Therefore, by virtue of the inequalities

$$0 < \frac{1}{m_0} E(t) \le 1, \qquad t \in \mathbb{R}_+^{m_0},$$

and inequality (20), the norm of the solution x(t,c) can be estimated as

$$||x(t(k),c)|| \ge |c_1|[E(t(k))]^{f[\tau(t(k))]} \ge |c_1|m_0^{|\alpha_2|-|\alpha_1|}[E(t(k))]^{\Theta(\alpha_{n(k)}^{(m(k))})}, \quad t(k) \in \tilde{\Pi}_{n(k)}^{(m(k))}, \quad k \in \mathbb{N}.$$

This, together with the inequalities $p_i \ge 0$, condition (16), and the limit relation (19), provides the desired inequalities

$$l_{x}(p) \ge \lim_{k \to \infty} \frac{\Theta(\alpha_{n(k)}^{(m(k))}) \ln E(t(k)) - (p, t(k))}{\|t(k)\|} \ge \lim_{k \to \infty} \frac{-a_{l}t_{l}(k) [\Theta(\alpha_{n(k)}^{(m(k))}) + S(p)]}{\|t(k)\|}$$

$$\ge \lim_{k \to \infty} [-a_{l}|\Theta(\alpha_{n(k)}^{(m(k))}) - \Theta(\alpha)|] = 0, \qquad p \in Q_{\alpha}.$$

It remains to consider the subcase $F_0 \neq \alpha$ of the second case. Then, for sufficiently large k, the norm of the solution x(t,c) satisfies the estimate

$$||x(t(k),c)|| \ge \frac{1}{2}|c_1| |F_0 - \alpha|[E(t(k))]^{|\alpha_2|}, \qquad t(k) \in \tilde{\Pi}_{n(k)}^{(m(k))}, \qquad k_0 \le k \in \mathbb{N},$$

similar to the estimate (17) in the first case. By using this estimate and by performing considerations similar to the proof of the estimate (18), we obtain the desired inequality $l_x(p) \geq 0$ in this subcase as well.

Thus, the inequality $l_x(p) \geq 0$ has been proved for all $p \in Q_\alpha$. To prove the desired relation $l_x(p) = 0$ in property (3₁), we suppose the contrary: there exists a $p \in Q_\alpha$ such that $l_x(p) > 0$. Then we arrive at a contradiction in the following way:

$$l_x(p + \varepsilon e_i) = \lim_{t \to +\infty} \frac{\ln \|x(t)\| - (p, t) - \varepsilon_i t_i}{\|t\|} \ge \lim_{t \to +\infty} \frac{\ln \|x(t)\| - (p, t)}{\|t\|} + \lim_{t \to +\infty} \left(-\varepsilon_i \frac{t_i}{\|t\|}\right)$$
$$= l_x(p) - \varepsilon_i > 0 \qquad \forall i = 1, \dots, m_0,$$

for all $\varepsilon_i \in (0, l_x(p)/2)$.

We have thereby proved the inclusion

$$Q_{\alpha} \subset P_{x(\cdot,\alpha)}, \quad a = (c_1, -\alpha c_1) \neq 0, \qquad \forall \alpha \in P_0$$

and hence the inclusion

$$Q(m_0) \equiv \left\{ p \in \mathbb{R}_{-}^{m_0} : \ \alpha_1 \le \sum_{i=1}^{m_0} \frac{p_i}{a_i} \le \alpha_2 \right\} \subset \Pi(A_1, \dots, A_{m_0}).$$

3. CONSTRUCTION OF THE ENTIRE CHARACTERISTIC SET OF THE LINEAR SYSTEM (1_{Mo2})

Now let us prove the relation

$$\Pi(A_1,\ldots,A_{m_0}) = Q(m_0).$$

To this end, we first prove the inequality $p \leq 0$ for any lower characteristic vector

$$p \in \Pi(A_1, \ldots, A_{m_0}).$$

Suppose the contrary: there exists a vector p with a component $p_l > 0$. The vector p is a lower characteristic vector of some nontrivial solution x(t,c) given by relation (6). Since the functions $f[\tau(t)]$ and $F[\tau(t)]$ satisfy the inequalities

$$|\alpha_2| \le f[\tau(t)] \le |\alpha_1|, \qquad 0 \le F[\tau(t)] \le 1, \qquad t \in \mathbb{R}_+^{m_0}, \tag{21}$$

it follows that the solution x(t,c) is bounded,

$$||x(t,c)|| \le 2|c_1|m_0^{|\alpha_1|} + |c_2|m_0^{|\alpha_2|}, \qquad t \in \mathbb{R}_+^{m_0}.$$

Therefore, in the direction $t_i = 0$, $i \neq l$, $t_l \to +\infty$, we have an inequality contradicting condition (3_1) in the definition of a lower characteristic vector p. The proof of the inequality $p \leq 0$ is complete.

Now let us prove the second desired inequality

$$S(p) \ge \alpha_1 \qquad \forall p \in \Pi(A_1, \dots, A_{m_0}).$$
 (22)

We again suppose the contrary: there exists a vector $p \in \Pi(A_1, \ldots, A_{m_0})$ such that $S(p) < \alpha_1$. Let x(t,c) be a nontrivial solution (6) for which p is a lower characteristic vector. By virtue of the inequality $E(t)/m_0 \le 1$, the norm of this solution admits the estimates

$$||x(t,c)|| \ge |c_1|m_0^{|\alpha_2|}[E(t)/m_0]^{f[\tau(t)]} \ge |c_1|m_0^{\alpha_1-\alpha_2}[E(t)]^{|\alpha_1|}, \qquad c_1 \ne 0, \qquad t \in \mathbb{R}_+^{m_0}, ||x(t,c)|| = |c_2|[E(t)]^{|\alpha_2|} \ge |c_2|m_0^{\alpha_1-\alpha_2}[E(t)]^{|\alpha_1|}, \qquad c_1 = 0, \qquad c_2 \ne 0, \qquad t \in \mathbb{R}_+^{m_0}.$$
(23)

Some components p_i of the vector p can be zero. Without loss of generality, one can assume that the first s of them are negative and all the remaining components are zero,

$$p_i < 0, \qquad i = 1, \dots, s, \qquad s \in \{1, \dots, m_0\}, \qquad p_{s+1} = \dots = p_{m_0} = 0.$$
 (24)

We fix some $l \in \{1, ..., s\}$ and choose a number ε satisfying the conditions

$$0 < 2\varepsilon \max_{i,j} \{a_i/a_j\} < \alpha_1 - S(p), \qquad 2\varepsilon < \min_{i=1,\dots,s} \{|p_i|\}.$$

$$(25)$$

The following cases are possible for an arbitrary vector $t \in \mathbb{R}^{m_0}_+$:

$$\min_{i=1,\dots,s} \{a_i t_i\} \equiv a_l t_l \le \frac{1}{2} \max_{i=1,\dots,s} \{a_i t_i\} \equiv \frac{1}{2} a_q t_q, \qquad l \ne q,$$
(26)

$$a_l t_l > \frac{1}{2} a_q t_q. \tag{27}$$

In case (26), from the estimate (23), relation (24), and the second condition in (25), we have the inequalities

$$\begin{split} r(t) &\equiv \ln \|x(t,c)\| - (p,t) - \varepsilon t_s \ge d + \alpha_1 a_l t_l - \sum_{i=1}^s \frac{p_i}{a_i} a_i t_i - \varepsilon t_q \\ &\ge d + a_l t_l [\alpha_1 - S(p)] - \frac{p_q}{a_q} (a_q t_q - a_l t_l) - \varepsilon t_q \\ &\ge d + a_l t_l [\alpha_1 - S(p)] - \left(\frac{1}{2} \frac{p_q}{a_q} + \frac{\varepsilon}{a_q}\right) a_q t_q \ge d = \text{const}, \qquad t \in \mathbb{R}_+^{m_0}. \end{split}$$

DIFFERENTIAL EQUATIONS Vol. 45 No. 5 2009

(Reg. No. 503, 24.5.2009)

In case (27), from the same estimates (23), relation (24), and the first condition in (25), we have the inequalities

$$r(t) \ge d + a_l t_l [\alpha_1 - S(p)] - \varepsilon t_q \ge d + a_l t_l [\alpha_1 - S(p) - 2\varepsilon a_l / a_q] \ge d = \text{const}, \qquad t \in \mathbb{R}_+^{m_0}.$$

We have thereby proved the assertion

$$\alpha_1 - S(p) > 0 \implies r(t) \ge d = \text{const}, \qquad t \in \mathbb{R}^{m_0}_+,$$

and hence the inequality

$$l_x(p + \varepsilon e_s) \ge 0, \qquad \varepsilon > 0,$$

which contradicts condition (3_2) in the definition of a lower characteristic vector $p \in P_x$. The proof of the desired inequality (22) is thereby complete.

Finally, let us prove the last desired inequality

$$S(p) \le \alpha_2, \qquad p \in \Pi(A_1, \dots, A_{m_0}). \tag{28}$$

Just as above, we suppose the contrary: there exists a vector $p \in \Pi(A_1, \ldots, A_{m_0})$ such that the opposite inequality $S(p) > \alpha_2$ holds. The vector p is a lower characteristic vector of some nontrivial solution x(t,c) given by relation (6). This, together with inequalities (21), implies that such a solution can be estimated as

$$||x(t,c)|| \le |c_1|m_0^{|\alpha_1|} [E(t)/m_0]^{|\alpha_2|} + (|c_1| + |c_2|) [E(t)]^{|\alpha_2|}$$

$$\le (2|c_1|m_0^{|\alpha_1|} + |c_2|) [E(t)]^{|\alpha_2|}, \qquad t \in \mathbb{R}_+^{m_0}.$$

By using them and the first property in (3_1) of the definition of a lower characteristic vector p of a solution x(t,c), we obtain the following contradiction:

$$0 = l_x(p) \le \lim_{t \to \infty} \frac{|\alpha_2| \ln E(t) - (p, t)|}{\|t\|} \Big|_{t \in T_a} = \frac{1}{r} [\alpha_2 - S(p)] < 0.$$

The proof of inequality (28) is complete. We have thereby proved the theorem in the two-dimensional case n=2.

4. CONSTRUCTION OF AN N-DIMENSIONAL SYSTEM (1_{M_0N}) WITH M_0 -DIMENSIONAL TIME AND WITH LOWER CHARACTERISTIC SET OF POSITIVE LEBESGUE M_0 -MEASURE

To give a complete proof of the theorem (in the case of an arbitrary n > 2), we supplement the constructed system (1_{m_02}) with general solution x(t,c) given by (6) by a completely integrable system such that, in the general solution z(t,C) of the new system (1_{mn}) , the general solution x(t,c) of system (1_{m_02}) with a nonzero vector $c \in \mathbb{R}^2$ is dominant, and in the case in which c = 0 and hence $x(t,0) \equiv 0$, the supplementing system of order (n-2) has a lower characteristic set lying in the lower characteristic set of the two-dimensional system (1_{m_02}) . By following [4], we choose such a supplementing system in the form

$$\frac{\partial y}{\partial t_i} = \frac{|\alpha_1|}{E(t)} \frac{\partial E(t)}{\partial t_i} y, \qquad y \in \mathbb{R}^{n-2}, \qquad t \in \mathbb{R}_+^{m_0}, \qquad i = 1, \dots, m_0, \tag{29}$$

with a new function E(t). Obviously, this system has bounded infinitely differentiable coefficient matrices

$$B_i(t) = \frac{|\alpha_1|}{E(t)} \frac{\partial E(t)}{\partial t_i} E_{n-2}, \qquad i = 1, \dots, m_0,$$

is completely integrable, and has the general solution

$$y(t,d) = (d_1, \dots, d_{n-2})[E(t)]^{|\alpha_1|}, \quad t \in \mathbb{R}_+^{m_0}, \tag{30}$$

with an arbitrary constant vector $d \in \mathbb{R}^{n-2}$. The same properties hold for the complete system (1_{mn}) consisting of two block-systems (1_{m_02}) and (29), and its general solution z(t, C) has the form

$$z(t,C) = (x(t,c), y(t,d)) \in \mathbb{R}^n, \qquad C = (c,d) \in \mathbb{R}^n, \qquad t \in \mathbb{R}^{m_0}_+.$$
 (31)

This final block-diagonal system has the form

$$\frac{\partial z}{\partial t_i} = \operatorname{diag}[A_i(t), B_i(t)]z, \qquad z \in \mathbb{R}^n, \qquad t \in \mathbb{R}^{m_0}_+, \qquad i = 1, \dots, m_0.$$
(32)

By the above-proved lemma, any nontrivial solution y(t,d) of system (29) given by (30) has the lower characteristic set $\{p \in \mathbb{R}^{m_0}_-: S(p) = \alpha_1\}$, which belongs to the lower characteristic set of system (1_{m_02}) . Therefore, any solution

$$z(t,C) = (0, y(t,d)) \in \mathbb{R}^n$$

of system (30) corresponding to the vector $C = (0, d) \in \mathbb{R}^n \setminus \{0\}$ has the same lower characteristic set. But for the case in which $c \neq 0$, from the representations (6), (30), and (31) and from the estimate

$$0 < E(t)/m_0 \le 1, \qquad t \in \mathbb{R}_+^{m_0},$$

we obtain the inequalities

$$1 \leq \frac{\|z(t,C)\|}{\|x(t,c)\|} \leq 1 + \frac{\|y(t,d)\|}{\|x(t,c)\|} \leq 1 + \frac{\|d\|}{|c_1|} \left[E(t)\right]^{|\alpha_1|-f[\tau(t)]} \leq 1 + \frac{\|d\|}{|c_1|} m_0^{|\alpha_1|}, \qquad t \in \mathbb{R}_+^{m_0},$$

for $c \neq 0$ and

$$1 \leq \frac{\|z(t,C)\|}{\|x(t,c)\|} \leq 1 + \frac{\|d\|}{|c_2|} [E(t)]^{|\alpha_1|-|\alpha_2|} \leq 1 + \frac{\|d\|}{|c_2|} m_0^{|\alpha_1|}, \qquad t \in \mathbb{R}_+^{m_0},$$

for $c_1 = 0$ and $c_2 \neq 0$. These inequalities can be represented by the single inequality

$$1 \le \frac{\|z(t,C)\|}{\|x(t,c)\|} \le 1 + \frac{\|d\|m_0^{|\alpha_1|}}{|c_1| + |c_2|(1-\operatorname{sgn}|c_1|)}, \qquad t \in \mathbb{R}_+^{m_0},$$

which implies the equivalence of norms of the solutions z(t,C) and x(t,c) for the case in which $c \neq 0$.

Therefore, the lower characteristic set of the *n*-dimensional system (32) with m_0 -dimensional time coincides with the lower characteristic set of the two-dimensional system (1_{m_02}) with time of the same arbitrary dimension $m_0 \geq 2$.

For $\alpha_1 = \alpha_2 = \alpha \leq 0$, the desired system (1_{m_0n}) has a form similar to the corresponding system in [4], and by a lemma in the present paper, its lower characteristic set coincides with the set $\{p \in \mathbb{R}^m_-: S(p) = \alpha\}$. The proof of the theorem is complete.

REFERENCES

- 1. Gaishun, I.V., Vpolne razreshimye mnogomernye differentsial'nye uravneniya (Completely Integrable Multidimensional Differential Equations), Minsk: Navuka i Tekhnika, 1983.
- 2. Gaishun, I.V., *Lineinye uravneniya v polnykh proizvodnykh* (Linear Total Differential Equations), Minsk: Navuka i Tekhnika, 1989.
- 3. Grudo, E.I., Characteristic Vectors and Sets of Functions of Two Variables and Their Fundamental Properties, *Differ. Uravn.*, 1976, vol. 12, no. 12, pp. 2115–2128.
- 4. Izobov, N.A., On the Existence of Linear Pfaffian Systems Whose Set of Lower Characteristic Vectors Has Positive Plane Measure, *Differ. Uravn.*, 1997, vol. 33, no. 12, pp. 1623–1630.
- 5. Izobov, N.A., *Vvedenie v teoriyu pokazatelei Lyapunova* (Introduction to the Theory of Lyapunov Exponents), Minsk: BGU, 2006.

- 6. Izobov, N.A., On the Existence of a Linear Pfaff System with Countably Many Distinct Characteristic Sets of Solutions, *Differ. Uravn.*, 1998, vol. 34, no. 6, pp. 735–743.
- 7. Izobov, N.A., On the Countability of the Number of Solutions of a Two-Dimensional Linear Pfaff System with Distinct Characteristic Sets, *Ukrain. Mat. Zh.*, 2007, vol. 59, no. 2, pp. 172–189.
- 8. Izobov, N.A., The Set of Lower Exponents of Positive Measure, *Differ. Uravn.*, 1968, vol. 4, no. 6, pp. 1147–1149.
- 9. Izobov, N.A., Krasovskii, N.G., and Platonov, A.S., The Existence of Linear Pfaff Systems with Lower Characteristic Set of Positive Measure in the Space \mathbb{R}^3 , Differ. Uravn., 2008, vol. 44, no. 10, pp. 1311–1318.
- Natanson, I.P., Teoriya funktsii veshchestvennoi peremennoi (Theory of Functions of a Real Variable), Moscow: Nauka, 1974.
- 11. Gelbaum, B. and Olmsted, J., Counterexamples in Analysis, San-Francisco: Dover, 1964. Translated under the title Kontrprimery v analize, Moscow: Mir, 1967.